计算机科学与探索 ›› 2016, Vol. 10 ›› Issue (6): 875-883.DOI: 10.3778/j.issn.1673-9418.1506050
苏 婷,于 洪+
SU Ting, YU Hong+
摘要: 聚类是数据挖掘的重要技术之一,在许多实际应用领域,由于数据获取限制,数据误读,随机噪音等原因会造成大量的缺失数据,形成数据集的不完备性,而传统的聚类方法无法直接对这类数据集进行聚类分析。针对数值型数据,提出了一个基于三支决策的不完备数据聚类方法。首先找到不完备数据对象的q个近邻,使用q个近邻的平均值填充缺失的数据;然后在“完备的”数据集上使用基于密度峰值的聚类方法得到簇划分,对每个簇中含有不确定性的数据对象,使用三支决策的思想将其划分到边界域中。三支决策聚类结果采用区间集形式表示,通常一个簇被划分成正域、负域和边界域部分,可以更好地描述软聚类结果。在UCI数据集和人工数据集上的实验结果展示了算法的有效性。