计算机科学与探索 ›› 2017, Vol. 11 ›› Issue (7): 1140-1149.DOI: 10.3778/j.issn.1673-9418.1605051
顾高升1,葛洪伟1,2+,周梦璇1
GU Gaosheng1, GE Hongwei1,2+, ZHOU Mengxuan1
摘要: 典型相关分析(canonical correlation analysis,CCA)是一种寻求同一对象的两组变量之间最大相关性的多元统计方法,其基于L2范数的最小均方误差(mean square error,MSE)的准则函数对于野值点非鲁棒。广义均值不仅在理论上被证明是鲁棒的,而且在聚类和对象识别等应用中获得了有效性验证。将广义均值应用于CCA,提出了一种基于广义均值的鲁棒CCA(CCA based on generalized mean,GMCCA),成功克服了CCA对野值点敏感的不足。一方面,通过抑制野值点对准则函数的影响,达到鲁棒的效果。另一方面,GMCCA避免了高维小样本导致协方差矩阵奇异的问题。在多特征手写体数据库(multiple feature database MFD)、人脸数据库(ORL)和对象图像数据库(COIL-20)上的实验结果验证了该算法的有效性。