计算机科学与探索 ›› 2018, Vol. 12 ›› Issue (5): 741-752.DOI: 10.3778/j.issn.1673-9418.1709038
任思禹+,申德荣,寇 月,聂铁铮,于 戈
REN Siyu+, SHEN Derong, KOU Yue, NIE Tiezheng, YU Ge
摘要: 随着各种社交网站的不断涌现,在多社交网络上找到影响传播范围最大的一组用户,对产品推荐或产品推广具有重要作用。为提高产品推荐或推广的广度和精准性,提出了一种跨社交网络基于话题感知的影响力最大化处理方法M-TLTGreedy。首先,根据跨社交网络中的文本语义信息和用户间的社会关系来评价多社交网络中用户间关系,以此构建一个基于话题的跨社交网络图;然后,在线性阈值模型的基础上,设计了一个基于话题感知的跨社交网络影响力最大化模型M-TLT(multiple-topic linear threshold);接着,基于M-TLT模型,利用改进的启发式算法,进行初始用户集的选取;最后,基于大量数据集的实验,证明了该算法无论在影响范围和时间效率上均表现良好。