计算机科学与探索 ›› 2019, Vol. 13 ›› Issue (1): 138-146.DOI: 10.3778/j.issn.1673-9418.1801043
张光荣1,王宝亮2+,侯永宏1
ZHANG Guangrong1, WANG Baoliang2+, HOU Yonghong1
摘要: 针对推荐算法中数据的稀疏性难题,把用户标签融合至实值条件受限玻尔兹曼机(real-valued conditional restricted Boltzmann machine,R_CRBM)模型,利用R_CRBM强大的拟合任意离散分布的能力,预测出用户对未交互商品的评分缺失值。具体来说,首先提出显层单元为实值的R_CRBM模型,接着运用文本分类中的TF-IDF算法预测出用户对所应用过的标签的喜爱度,与标签基因数据相乘得到用户对商品的预测 评分,融合至用户历史评分数据中。R_CRBM条件层在原有评分/未评分{0,1}向量中,融入用户标签/未标签{0,1}向量。通过真实数据集进行对比分析,实验结果表明提出的方法在一定程度上提升了推荐的准确性。