计算机科学与探索 ›› 2019, Vol. 13 ›› Issue (3): 457-467.DOI: 10.3778/j.issn.1673-9418.1809047
房立超1,王 钰2,3+,杨杏丽1,李济洪3
FANG Lichao1, WANG Yu2,3+, YANG Xingli1, LI Jihong3
摘要: 在传统的机器学习中,模型选择常常是直接基于某个性能度量指标的估计本身进行,没有考虑估计的方差,但是这样的忽略极有可能导致错误模型的选择。于是考虑在分类模型选择研究中添加方差的信息的方法,以提高所选模型的泛化能力,即将泛化误差性能度量指标的组块3×2交叉验证估计的方差估计作为正则化项添加到传统模型选择准则中,提出了一种新的方差正则化的分类模型选择准则。模拟和真实数据实验验证了在分类模型选择问题中,提出的模型选择准则相比传统方法选到正确分类模型的概率更大,验证了方差在模型选择中的重要性以及提出的模型选择准则的有效性。进一步,理论上证明了在二分类问题的模型选择中,该模型选择准则具有选择的一致性。