计算机科学与探索 ›› 2019, Vol. 13 ›› Issue (7): 1094-1101.DOI: 10.3778/j.issn.1673-9418.1809011
张 昱+,高克宁,陈 默,于 戈
ZHANG Yu+, GAO Kening, CHEN Mo, YU Ge
摘要: 链接预测旨在推荐网络中潜在的链接,是理解和研究社会网络特征的重要一步。随着社会网络的发展,许多网络中包含了大量的节点属性信息。研究集中在结合网络结构和节点属性信息来进行链接预测。网络中的两个节点既可能因为结构上相邻形成新链接,也可能因为属性相似产生联系,基于此假设提出了一种新的融合网络结构和节点属性的随机游走模型用于链接预测。首先建立了两个不同的网络图以及转移概率矩阵用于新的迭代规则,而后再简化该模型用于计算并提出了一种近似的快速算法。在两个标准数据集上进行的实验表明该方法较同类方法有明显的效果提升,同时进一步分析了随机游走粒子在两个网络图中游走的概率对预测结果的影响,分析结果显示节点属性可有效提高模型的预测能力。