计算机科学与探索 ›› 2019, Vol. 13 ›› Issue (9): 1471-1480.DOI: 10.3778/j.issn.1673-9418.1810017
姜芸,何伟,崔立真,杨倩,刘磊
JIANG Yun, HE Wei, CUI Lizhen, YANG Qian, LIU Lei
摘要: 随着移动互联网的快速发展和智能终端设备的迅速普及,服务类型与服务内容的日新月异,为移动用户带来严重的移动信息过载问题,如何为用户提供更好的服务推荐是亟待解决的难题。提出了一个移动情景和用户轨迹感知的众包服务推荐策略,首先对历史日志中的位置坐标通过聚类算法聚合成区域,然后挖掘出用户在不同移动情景下的轨迹模式,进而提取出移动规则并判断每条规则所属的情景;在进行众包服务推荐时,通过实时感知到的位置轨迹和移动情景信息,预测用户即将到达的位置区域,从而将区域内的众包服务推送给该用户。提出的预测方法避免了额外增加用户执行任务的时间、行程、费用等成本,给用户推荐更适合的任务,提高用户服务满意度。