计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (1): 171-180.DOI: 10.3778/j.issn.1673-9418.1812064
• 图形图像 • 上一篇
吴鑫鑫,肖志勇,刘辰
WU Xinxin, XIAO Zhiyong, LIU Chen
摘要: 视网膜图像分析成为目前诊断多种疾病非侵入的主要方式,其中血管的提取是最重要的一步。监督学习的方法在血管提取上有很好的效果,为了进一步提高检测的精度,提出了低尺度血管检测(LVD)算法。该网络除了有一个提取输入原尺度下特征的子网络外,还增加了两个低尺度下的特征提取子网络,并将低尺度下的单一输出融合原尺寸下的特征,降维后得到最后的输出结果。考虑到眼底血管结构特性,在LVD中设计了具有较深层数和较少参数的非对称固定深度子网络(ADS)。在公共的数据库DRIVE中进行测试,仅采用彩色眼底图像的绿色分量和B-COSFIRE滤波响应作为特征输入,其敏感性、特异性、准确率以及AUC指标分别为0.819 2、0.984 2、0.969 5、0.978 2,达到了先进水平。