计算机科学与探索 ›› 2010, Vol. 4 ›› Issue (7): 629-636.DOI: 10.3778/j.issn.1673-9418.2010.07.006

• 学术研究 • 上一篇    下一篇

半监督图核降维方法*

吴 遐+; 张道强

  

  1. 南京航空航天大学 信息科学与技术学院, 南京 210016
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2010-07-14 发布日期:2010-07-14
  • 通讯作者: 吴 遐

Graph Kernel Based Semi-Supervised Dimensionality Reduction Method*

WU Xia+; ZHANG Daoqiang

  

  1. College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2010-07-14 Published:2010-07-14
  • Contact: WU Xia

摘要: 基于图结构的数据表示和分析, 在机器学习领域正得到越来越广泛的关注。以往研究主要集中在为图数据定义一个度量其相似性关系的核函数即图核, 一旦定义出图核, 就可以用标准的支持向量机(SVM)来对图数据进行分类。将图核方法进行扩充, 先利用核主成分分析(kPCA)对图核诱导的高维特征空间中的数据进行降维, 得到与原始图数据相对应的低维向量表示的数据, 然后对这些新得到的数据用传统机器学习方法进行分析; 通过在kPCA中利用图数据中的成对约束形式的监督信息, 得到基于图核的半监 督降维方法。在MUTAG和PTC等标准图数据集上的实验结果验证了所提方法的有效性。

关键词: 图分类, 图核, 成对约束, 半监督降维

Abstract: Graph based data representation and analysis have received more and more attention in machine learning community. Most previous studies focus on designing an appropriate graph kernel which measures the similarity rela- tionship between graph data. Once the graph kernel is constructed, standard support vector machine (SVM) can be used for graph classification. This paper extends graph kernel methods for graph classification. It firstly performs dimensionality reduction using kernel principal component analysis (kPCA) on those high-dimensional data induced by graph kernel to obtain corresponding low-dimensional data with vector representation, and then analyzes those new data using conventional machine learning methods. Furthermore, it introduces supervision information in the form of pairwise constraints into kPCA and proposes the graph kernel based semi-supervised dimensionality reduc-tion algorithm. Experimental results on MUTAG and PTC data sets validate the effectiveness of the proposed methods.

Key words: graph classification, graph kernel, pairwise constraints, semi-supervised dimensionality reduction

中图分类号: