计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (5): 825-832.DOI: 10.3778/j.issn.1673-9418.1905094

• 人工智能 • 上一篇    下一篇

融合口碑和地理位置的竞争关系量化模型

李艾鲜,乔少杰,韩楠,元昌安,黄萍,彭京,周凯   

  1. 1. 成都信息工程大学 网络空间安全学院,成都 610225
    2. 成都信息工程大学 软件工程学院,成都 610225
    3. 成都信息工程大学 软件自动生成与智能服务四川省重点实验室,成都 610225
    4. 成都信息工程大学 管理学院,成都 610103
    5. 南宁师范大学,南宁 530001
    6. 四川省公安厅,成都 610014
  • 出版日期:2020-05-01 发布日期:2020-05-08

Competitive Relationship Quantitative Model by Integrating Word-of-Mouth and Geographic Location

LI Aixian, QIAO Shaojie, HAN Nan, YUAN Chang'an, HUANG Ping, PENG Jing, ZHOU Kai   

  1. 1. School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, China
    2. School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China
    3. Software Automatic Generation and Intelligent Service Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, China
    4. School of Management, Chengdu University of Information Technology, Chengdu 610103, China
    5. Nanning Normal University, Nanning 530001, China
    6. Sichuan Provincial Department of Public Security, Chengdu 610014, China
  • Online:2020-05-01 Published:2020-05-08

摘要:

在同类服务或产品中识别和量化竞争是当前竞争关系挖掘领域关注的重要问题。提出科学合理的竞争关系评价指标,构建实体竞争关系综合评价指标体系,使用隐含Dirichlet分布(LDA)模型对消费者口碑评论进行降维和主题提取,构建口碑相似度函数,对实体用户口碑相似度进行量化表示。根据实体地理位置属性,计算实体空间距离,构建实体相邻关系并以具有相邻关系实体的距离作为聚类中心,使用[K]近邻(KNN)算法对其进行聚类。综合上述技术提出LTM模型,融合了用户评论、实体地理位置属性,量化实体间竞争关系。大量真实移动社交网络数据上实验结果表明所提方法在量化指标制定、实用性和时间性能上具有较大优势。

关键词: 竞争关系, 关系量化, 口碑, 地理位置

Abstract:

It is an important problem of identifying and quantifying the competition in similar services or products in the research area of competitive relationship mining. A scientific and reasonable evaluation metric of competitive relationship is proposed, and a comprehensive evaluation system of entity competitive relationship is constructed. Dimension reduction and theme extraction on users?? reviews are achieved by using the latent Dirichlet allocation (LDA) model, the similarity function of comments is constructed, and the similarity degree of entity users?? comments is quantified. Based on the geographic location information of entities, the spatial distance of entities is calculated, the adjacent relation of entities is constructed, the distance of entities with adjacent relationship is regarded as the cluster center, and the entities are clustered by using the K-nearest neighbor (KNN) algorithm. The location & topical model (LTM) is proposed by integrating user??s reviews, entity??s geographical attributes, and quantifying the com-petitive relationship between entities. Conducted on a large number of real social network data, the experiments results show that the proposed method has great advantages in quantitative metric formulation, practicability and time performance.

Key words: competitive relationship, relationship quantification, word-of-mouth, geographical location