[1] Hao F, Li S, Min G Y, et al. An efficient approach to generating location-sensitive recommendations in ad-hoc social network environments[J]. IEEE Transactions on Services Computing, 2015, 8(3): 520-533.
[2] Chen J Y, Za?ane O R, Goebel R. A visual data mining approach to find overlapping communities in networks [C]//Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Mining, Athens, Jul 20-22, 2009. Washington: IEEE Computer Society, 2009: 338-343.
[3] Shang H L, Tao Y D, Gao Y, et al. An improved invariant for matching molecular graphs based on VF2 algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(1): 122-128.
[4] Liu J Z, Lee Y T. A graph-based method for face identification from a single 2D line drawing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(10): 1106-1119.
[5] Kumar A, Kim J, Feng D G, et al. Graph-based retrieval of PET-CT images using vector space embedding[C]//Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Jun 20-22, 2013. Washington: IEEE Computer Society, 2013: 413-416.
[6] Wang J, Cheng J. Truss decomposition in massive networks[J]. Proceedings of the VLDB Endowment, 2012, 5(9): 812-823.
[7] Wang Y. Research on K-truss-based graph community discovery algorithm[D]. Qinhuangdao: Yanshan University, 2016.王岩. 基于K-truss的图社区发现算法研究[D]. 秦皇岛: 燕山大学, 2016.
[8] Wang B, Zhou G, Zhang F J. GAS based K-truss decomposition method[J]. Application Research of Computers, 2018, 35(6): 1691-1695.王邠, 周刚, 张凤娟. 基于GAS模型的K-truss分解算法[J]. 计算机应用研究, 2018, 35(6): 1691-1695.
[9] Alemi M, Haghighi H. KTMiner: distributed K-truss detection in big graphs[J]. Information Systems, 2019, 83: 195-216.
[10] Qi B L. Research and implementation of subgraph pattern mining algorithm for uncertain graph data[D]. Shenyang: Northeast University, 2013.齐宝雷. 面向不确定图数据的子图模式挖掘算法的研究与实现[D]. 沈阳: 东北大学, 2013.
[11] Wei T Z. Research on close community query algorithms based on K-truss[D]. Qinhuangdao: Yanshan University, 2018.魏天柱. 基于K-truss的紧密社区查询算法研究[D]. 秦皇岛: 燕山大学, 2018.
[12] Yang L. Identification of the most influential nodes based on diffusion K-truss decomposition algorithm and its application[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018.杨李. 基于扩散K-truss分解算法识别最有影响力节点及其应用研究[D]. 南京: 南京邮电大学, 2018.
[13] Wang C C. Design and implementation of community search algorithms in social networks[D]. Harbin: Heilongjiang University, 2018.王成成. 社会网络中社区搜索算法设计与实现[D]. 哈尔滨: 黑龙江大学, 2018.
[14] Han W T. Research on data processing technology of sequence diagram[D]. Beijing: Tsinghua University, 2015. 韩文弢. 时序图数据处理技术研究[D]. 北京: 清华大学, 2015.
[15] Paranjape A, Benson A R, Leskovec J. Motifs in temporal networks[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, Feb 6-10, 2017. New York: ACM, 2017: 601-610.
[16] Wu H H, Cheng J, Lu Y, et al. Core decomposition in large temporal graphs[C]//Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, Oct 29-Nov 1, 2015. New York: ACM, 2015: 649-658.
[17] Li R H, Su J, Qin L, et al. Persistent community search in temporal networks[C]//Proceedings of the 34th IEEE International Conference on Data Engineering, Paris, Apr 16-19, 2018. Washington: IEEE Computer Society, 2018: 797-808. |