[1] Ajtai M. Generating hard instances of lattice problems[C]//Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, May 22-24, 1996. New York: ACM, 1996: 99-108.
[2] Ajtai M, Dwork C. A public-key cryptosystem with worst-case/average-case equivalence[C]//Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, El Paso, May 4-6, 1997. New York: ACM, 1997: 284-293.
[3] Regev O. On lattices, learning with errors, random linear codes, and cryptography[C]//Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, May 22-24, 2005. New York: ACM, 2005: 84-93.
[4] Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions[C]//Proceedings of the 40th Annual ACM Symposium on Theory of Com-puting, Victoria, May 17-20, 2008. New York: ACM, 2008: 197-206.
[5] Kawachi A, Tanaka K, Xagawa K. Multi-bit cryptosystems based on lattice problems[C]//LNCS 4450: Proceedings of the 10th International Conference on Practice and Theory in Public-Key Cryptography, Beijing, Apr 16-20, 2007. Berlin, Heidelberg: Springer, 2007: 315-329.
[6] Peikert C, Vaikuntanathan V, Waters B. A framework for efficient and composable oblivious transfer[C]//LNCS 5157: Proceedings of the 28th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, Aug 12-17, 2008. Berlin, Heidelberg: Springer, 2008: 554-571.
[7] Li Z P, Ma C G, Zhang L, et al. Two types LWE-based multi-bit lattice-based encryption schemes[J]. Netinfo Security, 2017, 17(10): 1-7.
[8] Li M X, Wang H T. Identity-based matrix encryption scheme based on lattices[J]. Netinfo Security, 2019, 19(1): 34-41. 李明祥, 王洪涛. 基于格的身份基矩阵加密方案[J]. 信息网络安全, 2019, 19(1): 34-41.
[9] Chen H, Han K. Homomorphic lower digits removal and im-proved FHE bootstrapping[C]//LNCS 10820: Proceedings of the 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Apr 29-May 3, 2018. Berlin, Heidelberg: Springer, 2018: 315-337.
[10] Ducas L, Micciancio D. FHEW: bootstrapping homomorphic encryption in less than a second[C]//LNCS 9056: Procee-dings of the 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Apr 26-30, 2015. Berlin, Heidelberg: Springer, 2015: 617-640.
[11] Brakerski Z, Gentry C, Vaikuntanathan V. (leveled) fully homomorphic encryption without bootstrapping[J]. ACM Transactions on Computation Theory, 2014, 6(3): 13.
[12] Tu G S, Yang X Y, Zhou T P. Efficient identity-based multi-identity fully homomorphic encryption scheme[J]. Journal of Computer Applications, 2019, 39(3): 750-755. 涂广升, 杨晓元, 周潭平. 高效的身份基多用户全同态加密方案[J]. 计算机应用, 2019, 39(3): 750-755.
[13] Yang X Y, Tu G S, Kong Y J, et al. Multi-identity fully ho-momorphic encryption scheme supporting threshold decryp-tion[J]. Advanced Engineering Sciences, 2019, 51(4): 133-139. 杨晓元, 涂广升, 孔咏骏, 等. 支持门限解密的多身份全同态加密方案[J]. 工程科学与技术, 2019, 51(4): 133-139.
[14] Shen T C, Wang F Q, Chen K F, et al. Efficient leveled (multi) identity-based fully homomorphic encryption sche-mes[J]. IEEE Access, 2019, 7: 79299-79310.
[15] Hiromasa R, Abe M, Okamoto T. Packing messages and optimizing bootstrapping in GSW-FHE[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Com-puter Sciences, 2016(1): 73-82.
[16] Wang B, Wang X Q, Xue R, et al. Matrix FHE and its application in optimizing Bootstrapping[J]. The Computer Journal, 2018, 61(12): 1845-1861.
[17] Cash D, Hofheinz D, Kiltz E, et al. Bonsai trees, or how to delegate a lattice basis[J]. Journal of Cryptology, 2012, 25(4): 601-639.
[18] Brakerski Z. Fully homomorphic encryption without mo-dulus switching from classical GapSVP[C]//LNCS 7417: Proceedings of the 32nd Annual Cryptology Conference Advances in Cryptology,Santa Barbara, Aug 19-23, 2012. Berlin, Heidelberg: Springer, 2012: 868-886.
[19] Micciancio D, Peikert C. Trapdoors for lattices: simpler, tighter, faster, smaller[C]//LNCS 7237: Proceedings of the 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, Apr 15-19, 2012. Berlin, Heidelberg: Springer, 2012: 700-718.
[20] Gentry C, Sahai A, Waters B. Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based[C]//LNCS 8042: Proceedings of the 33rd Annual Cryptology Conference, Santa Barbara, Aug 18-22, 2013. Berlin, Heidelberg: Springer, 2013: 75-92. |