[1] Fortunato S, Hric D. Community detection in networks: a user guide[J]. Physics Reports, 2016, 659: 1-44.
[2] Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of the National Aca-demy of Sciences of the United States of America, 2002, 99(12): 7821-7826.
[3] Menche J, Sharma A, Kitsak M, et al. Uncovering disease relationships through the incomplete interactome[J]. Science, 2015, 347(6624): 841-850.
[4] Clauset A, Moore C, Newman M E J. Hierarchical structure and the prediction of missing links in networks[J]. Nature, 2008, 453(7191): 98-101.
[5] Zhang F, Zhang W, Zhang Y, et al. OLAK: an efficient algo-rithm to prevent unraveling in social networks[J]. Procee-dings of the VLDB Endowment, 2017, 6(10): 649-660.
[6] Rahman M S, Ngom A. A fast agglomerative community detection method for protein complex discovery in protein interaction networks[C]//LNCS 7986: Proceedings of the 8th IAPR International Conference on Pattern Recognition in Bioinformatics, Nice, Jun 17-20, 2013. Berlin, Heidel-berg: Springer, 2013: 1-12.
[7] Wang X, Zhang Y, Zhang W, et al. Efficient distance-aware influence maximization in geo-social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(3): 599-612.
[8] Schaeffer S E. Survey: graph clustering[J]. Computer Science Review, 2007, 1(1): 27-64.
[9] Clauset A, Newman M E J, Moore C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70: 066111.
[10] Pothen A. Graph partitioning algorithms with applications to scientific computing[J]. Parallel Numerical Algorithms Norfolk, 1997, 4: 323-368.
[11] Newman M E J, Girvan M. Finding and evaluating com-munity structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
[12] Newman M E J. Spectral methods for community detection and graph partitioning[J]. Physical Review E, 2013, 88(4): 042822.
[13] Palla G, Derényi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and so-ciety[J]. Nature, 2005, 435: 814-818.
[14] Marya B, Mason A P, Stacy W. Community detection in temporal multilayer networks, with an application to correla-tion networks[J]. Multiscale Modeling & Simulation, 2016, 14(1): 1-41.
[15] Bollobás B. Modern graph theory[M]. Berlin, Heidelberg: Springer, 1998.
[16] Berlingerio M, Coscia M, Giannotti F, et al. Foundations of multidimensional network analysis[C]//Proceedings of the 2011 International Conference on Advances in Social Net-works Analysis and Mining, Kaohsiung, China, Jul 25-27, 2011. Washington: IEEE Computer Society, 2011: 485-489.
[17] Cai D, Shao Z, He X F, et al. Community mining from multi-relational networks[C]//LNCS 3721: Proceedings of the 9th European Conference on Principles and Practice of Know-ledge Discovery in Databases, Porto, Oct 3-7, 2005. Berlin, Heidelberg: Springer, 2005: 445-452.
[18] Ahn Y Y, Bagrow J P, Lehmann S. Link communities reveal multi-scale complexity in networks[J]. Nature, 2010, 466: 761-764.
[19] Sun Y, Han J. Mining heterogeneous information networks a structural analysis approach[J]. ACM SIGKDD Explorations Newsletter, 2013, 14(2): 20-28.
[20] Xie J, Kelley S, Szymanski B K. Overlapping community detection in networks: the state-of-the-art and comparative study[J]. ACM Computing Surveys, 2013, 45(4): 43.
[21] Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs[J]. Bell Labs Technical Journal, 1970, 49(2): 291-307.
[22] Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133.
[23] Luxburg U V. A tutorial on spectral clustering[J]. Statistics & Computing, 2007, 17(4): 395-416.
[24] Zlati V, Gabrielli A, Caldarelli G. Topologically biased random walk and community finding in networks[J]. Physical Review E, 2010, 82(6): 066109.
[25] Palla G, ábel D, Illés J F, et al. k-clique percolation and clustering[J]. Handbook of Large-Scale Random Networks, 2010, 18(5): 369-408.
[26] Lancichinetti A, Fortunato S. Community detection algori-thms: a comparative analysis[J]. Physical Review E, 2009, 80(5): 056117.
[27] Gregory S. Finding overlapping communities in networks by label propagation[J]. New Journal of Physics, 2010, 12(10): 103018.
[28] Xie J, Szymanski B K, Liu X. SLPA: uncovering overlapping communities in social networks via a speaker-listener interac-tion dynamic process[C]//Proceedings of the 11th International Conference of Data Mining Workshop, Vancouver, Dec 11, 2011. Piscataway: IEEE, 2011: 344-349.
[29] Berlingerio M, Coscia M, Giannotti F. Finding and characte-rizing communities in multidimensional networks[C]//Procee-dings of the 2011 International Conference on Advances in Social Networks Analysis and Mining, Kaohsiung, China, Jul 25-27, 2011. Washington: IEEE Computer Society, 2011: 490-494.
[30] Zhu G Y, Li K. A unified model for community detection of multiplex networks[C]//LNCS 8786: Proceedings of the 15th International Conference on Web Information Systems Engineering, Thessaloniki, Otc 12-14, 2014. Berlin, Heidel-berg: Springer, 2014: 31-46.
[31] Tang L, Wang X, Liu H. Uncovering groups via heterogeneous interaction analysis[C]//Proceedings of the 9th IEEE Inter-national Conference on Data Mining, Miami, Dec 6-9, 2009. Washington: IEEE Computer Society, 2009: 530-512.
[32] Lancichinetti A, Fortunato S. Consensus clustering in complex networks[J]. Scientific Reports, 2012, 2: 336.
[33] Berlingerio M, Pinelli F, Calabrese F. ABACUS: frequent pattern mining-based community discovery in multidimen-sional networks[J]. Data Mining & Knowledge Discovery, 2013, 27(3): 294-320.
[34] Mucha P J, Richardson R, Macon R, et al. Community struc-ture in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980): 876-878.
[35] Ma X, Dong D, Wang Q. Community detection in multi-layer networks using joint nonnegative matrix factorization[J]. IEEE Transactions on Knowledge?and Data Engineering, 2019, 31(2): 273-286.
[36] Bródka P, Filipowski T, Kazienko P. An introduction to community detection in multi-layered social network[C]//Proceedings of the 4th World Summit on the Knowledge Society Information Systems, E-learning, and Knowledge Management Research, Mykonos, Sep 21-23, 2011. Berlin, Heidelberg: Springer, 2011: 185-190.
[37] Hmimida M, Kanawati R. Community detection in multiplex networks: a seed-centric approach[J]. Networks & Hetero-geneous Media, 2015, 10(1): 71-85.
[38] Yakoubi Z, Kanawati R. LICOD: a leader-driven algorithm for community detection in complex networks[J]. Vietnam Journal of Computer Science, 2014, 1(4): 241-256.
[39] Alimadadi F, Khadangi E, Bagheri A. Community detection in facebook activity networks and presenting a new multilayer label propagation algorithm for community detection[J]. Inter-national Journal of Modern Physics B, 2019, 33(10): 1950089.
[40] Afsarmanesh N, Magnani M. Finding overlapping commu-nities in multiplex networks[J]. arXiv:1602.03746, 2016.
[41] Interdonato R, Tagarelli A, Ienco D, et al. Local community detection in multilayer networks[J]. Data Mining Knowledge Discovery, 2017, 31(5): 1444-1479.
[42] Yang J, Leskovec J. Overlapping community detection at scale: a nonnegative matrix factorization approach[C]//Pro-ceedings of the 6th ACM International Conference on Web Search and Data Mining, Rome, Feb 4-8, 2013. New York: ACM, 2013: 587-596.
[43] Ma X K, Dong D. Evolutionary nonnegative matrix factori-zation algorithms for community detection in dynamic net-works[J]. IEEE Transactions on Knowledge & Data Engi-neering, 2017, 29(5): 1045-1058.
[44] Esraa A S, Mahmood A K, Selin A. Tensor based temporal and multi-layer community detection for studying brain dyna-mics during resting state fMRI[J]. IEEE Transactions on Bio-medical Engineering, 2019, 66(3): 695-709.
[45] Gauvin L, Panisson A, Cattuto C. Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach[J]. PLoS One, 2014, 9(1): e86028.
[46] De Domenico M, Lancichinetti A, Arenas A, et al. Identif-ying modular flows on multilayer networks reveals highly overlapping organization in social systems[J]. Physical Review X, 2015, 5: 011027.
[47] Kuncheva Z, Montana G. Community detection in multiplex networks using locally adaptive random walks[C]//Procee-dings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, Aug 23-27, 2015. New York: ACM, 2015: 1308-1315.
[48] Pons P, Latapy M. Computing communities in large networks using random walks[J]. Computer and Information Sciences, 2005, 10(1): 284-293.
[49] Ebrahimi M, Shahmoradi M R, Heshmati Z, et al. A novel method for overlapping community detection using multi-objective optimization[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 505: 825-835.
[50] Bazzi M, Jeub L G S, Arenas A, et al. Generative benchmark models for mesoscale structure in multilayer networks[J]. arXiv:1608.06196, 2016.
[51] Amelio A, Pizzuti C. Is normalized mutual information a fair measure for comparing community detection methods?[C]//Proceedings of the 2015 IEEE/ACM International Con-ference on Advances in Social Networks Analysis & Mining, Paris, Aug 23-27, 2015. New York: ACM, 2015: 1584-1385.
[52] Steinley D, Brusco M J, Hubert L. The variance of the ad-justed rand index[J]. Psychological Methods, 2016, 21(2): 261-272.
[53] Xu K, Hu W H, Leskovec J, et al. How powerful are graph neural networks?[J]. arXiv:1810.00826, 2019.
[54] Kang Y, Gu X Y, Yu B, et al. A multilevel community detec-tion algorithm for large-scale social information networks[J]. Chinese Journal of Computers, 2016, 39(1): 169-182. 康颖, 古晓艳, 于博, 等. 一种面向大规模社会信息网络的多层社区发现算法[J]. 计算机学报, 2016, 39(1): 169-182.
[55] Lee J, Lee I, Kang J. Self-attention graph pooling[J]. arXiv:1904.08082, 2019. |