[1] He L, Li C M, Xu C Y. Intensity statistics-based HSI diffu-sion for color photo denoising[C]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 24-26, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[2] Andreas K, Mongi A. Digital color image processing[M]. New York: John Wiley & Sons, 2008.
[3] Zhang Y Q, Zhang P L, Wang G D, et al. Denoising method for color images based on chrominance model and curvelet transform[J]. Journal of Image and Graphics, 2012, 17(12): 1472-1477.张云强, 张培林, 王国德, 等. 基于曲波变换和色度模型的彩色图像去噪[J]. 中国图象图形学报, 2012, 17(12): 1472-1477.
[4] Ono S, Yamada I. Decorrelated vectorial total variation[C]// Proceedings of the 2014 IEEE Conference on Computer Vi-sion and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 4090-4097.
[5] Jia D, Meng X F, Zhang Y F, et al. Edge preserving denois-ing of color image through controlling the gradient vector[J]. Journal of Image and Graphics, 2014, 19(4): 493-501.贾迪, 孟祥福, 张一飞, 等. 梯度矢量扩散控制实现边缘保持的彩色图像去噪[J]. 中国图象图形学报, 2014, 19(4): 493-501.
[6] Moreno J C, Prasath V B S, Neves J C. Color image pro-cessing by vectorial total variation with gradient channels coupling[J]. Inverse Problems & Imaging, 2016, 10(2): 461-497.
[7] Lu B B, Li Y, Wang Y M, et al. Gradient guided higher-order model based on Riemann geometry for color image denoising[J]. Journal of Image and Graphics, 2017, 22(10): 1335-1347.芦碧波, 李阳, 王永茂, 等. 梯度引导的高阶几何彩色图像去噪模型[J]. 中国图象图形学报, 2017, 22(10): 1335-1347.
[8] Radlak K, Malinski L, Smolka B. Deep learning for impul-sive noise removal in color digital images[C]//Proceedings of the Real-Time Image Processing and Deep Learning, Bal-timore, May 14, 2019. San Francisco: SPIE, 2019: 1099608.
[9] Jia J, Chen L. Using normal inverse Gaussian model for im-age denoising in NSCT domain[J]. Acta Electronica Sinica, 2011, 39(7): 1563-1568.贾建, 陈莉. 基于正态逆高斯模型的非下采样Contourlet变换图像去噪[J]. 电子学报, 2011, 39(7): 1563-1568.
[10] Liu S Q, Hu S H, Xiao Y. Shearlet domain SAR image de-noising via sparse representation[J]. Journal of Electronics & Information Technology, 2012, 34(9): 2110-2115.刘帅奇, 胡绍海, 肖扬. 基于稀疏表示的Shearlet域SAR图像去噪[J]. 电子与信息学报, 2012, 34(9): 2110-2115.
[11] Wang Z W, Li S Z. Adaptive fractal-wavelet image denois-ing base on multivariate statistical model[J]. Chinese Jour-nal of Computers, 2014, 37(6): 1380-1389.王智文, 李绍滋. 基于多元统计模型的分形小波自适应图像去噪[J]. 计算机学报, 2014, 37(6): 1380-1389.
[12] Wang X H, Zhu Y H, Lv F, et al. Cauchy distribution NSST- HMT model and its applications in image denoising[J]. Chinese Journal of Computers, 2018, 41(11): 78-90.王相海, 朱毅欢, 吕芳, 等. 基于Cauchy分布的非下采样Shearlet HMT模型及其图像去噪应用[J]. 计算机学报, 2018, 41(11): 78-90.
[13] Ji J, Li X, Xu S X, et al. SAR image despeckling by sparse reconstruction based on shearlets[J]. Acta Automatica Sinica, 2015, 41(8): 1495-1501.
[14] Jiao L L. An image denoising algorithm for strong noise image based on structural similarity of contourlet domain via grey relational analysis[C]//Proceedings of the 13th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Sydney, Jul 3-5, 2019. Berlin, Hei-delberg: Springer, 2019: 300-309.
[15] Easley G, Labate D, Lim W Q. Sparse directional image re-presentations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.
[16] Mairal J, Bach F R, Ponce J, et al. Online dictionary learn-ing for sparse coding[C]//Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Jun 14-18, 2009. New York: ACM, 2009: 689-696.
[17] Keerthi S S, Shevade S. A fast tracking algorithm for gene-ralized LARS/LASSO[J]. IEEE Transactions on Neural Net-works, 2007, 18(6): 1826-1830.
[18] Yang G Y. Image quality assessment and its application in image denoising[D]. Wuhan: Wuhan University, 2018.杨光义. 图像质量评价及其在图像去噪中的应用研究[D]. 武汉: 武汉大学, 2018.
[19] Zeng G P. Researeh on image denoising based on wavelet transform[D]. Beijing: Beijing Jiaotong University, 2007.曾国平. 基于小波变换的图像去噪算法研究[D]. 北京: 北京交通大学, 2007.
[20] Zhang Q. Research on image fusion and denoising algori-thms based on nonsubsampled Shearlet transforms domain[D]. Hefei: Hefei University of Technology, 2014.张强. 基于非下采样Shearlet变换域的图像融合及去噪算法研究[D]. 合肥: 合肥工业大学, 2014.
[21] Hu H Z, Sun H, Deng C Z, et al. Image de-noising algori-thm based on Shearlet transform[J]. Journal of Computer Applications, 2010, 30(6): 1562-1564.胡海智, 孙辉, 邓承志, 等. 基于Shearlet变换的图像去噪算法[J]. 计算机应用, 2010, 30(6): 1562-1564. |