[1] Wang G Y. Rough set theory and knowledge acquisition[M]. Xi??an: Xi??an Jiaotong University Press, 2001. 王国胤. Rough集理论与知识获取[M]. 西安: 西安交通大学出版社, 2001.
[2] Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]//Proceedings of the NATO Advanced Study Institute Held at Banff, Canada, Aug 28-Sep 12, 1981. Berlin, Heidelberg: Springer, 1981: 445-470.
[3] Qin L Z, Li J H, Wang Y Y. Concept lattice based knowledge discovery and its application to analysis of employment data in universities[J]. Journal of Shandong University (Natural Science), 2015, 50(12): 58-64. 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64.
[4] Niu J J, Fan M, Li J H, et al. Knowledge discovery method for heterogeneous data based on concept lattice[J]. Computer Science, 2017, 44(9): 62-66. 牛娇娇, 范敏, 李金海, 等. 基于概念格的异构数据知识发现方法[J]. 计算机科学, 2017, 44(9): 62-66.
[5] Valverde-Albacete F J, Calabozo J M G, Pe?as A, et al. Sup-porting scientific knowledge discovery with extended, gene-ralized formal concept analysis[J]. Expert Systems with App-lications, 2015, 44: 198-216.
[6] Zhi H L, Li J H. Granule description based knowledge dis-covery from incomplete formal contexts via necessary attri-bute analysis[J]. Information Sciences, 2019, 485: 347-361.
[7] Chen Z H, Zhang Y, Xie G. Mining algorithm for concise decision rules based on granular computing[J]. Control and Decision, 2015, 30(1): 143-148. 陈泽华, 张裕, 谢刚. 基于粒计算的最简决策规则挖掘算法[J]. 控制与决策, 2015, 30(1): 143-148.
[8] Li J H, Mei C L, Kumar C A, et al. On rule acquisition in decision formal contexts[J]. International Journal of Machine Learning and Cybernetics, 2013, 4(6): 721-731.
[9] Dai J H, Tian H W, Wang W T, et al. Decision rule mining using classification consistency rate[J]. Knowledge Based Systems, 2013, 43(2): 95-102.
[10] Ren Y, Li J H, Kumar C A, et al. Rule acquisition in formal decision contexts based on formal, object-oriented and property-oriented concept lattices[J]. The Scientific World Journal, 2014: 685362.
[11] Qin K Y, Li B, Pei Z. Attribute reduction and rule acquisition of formal decision context based on object (property) oriented concept lattices[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(10): 2837-2850.
[12] Shao M W, Leung Y, Wu W Z, et al. Rule acquisition and comprehensiveity reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2014, 55(1): 259-274.
[13] Zhang J, Wei L. Rules acquisition and attribute reduction of ordered formal decision contexts[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(11): 976-984. 张菁, 魏玲. 序决策形式背景的规则提取及属性约简[J]. 模式识别与人工智能, 2016, 29(11): 976-984.
[14] Li J H, Wu W Z, Deng S. Multi-scale theroy in formal concept analysis[J]. Journal of Shandong University (Natural Science), 2019, 54(2): 34-44. 李金海, 吴伟志, 邓硕. 形式概念分析的多粒度标记理论[J]. 山东大学学报(理学版), 2019, 54(2): 34-44.
[15] Li J H, Li Y F, Mi Y L, et al. Meso-granularity labeled method for multi-granularity formal concept analysis[J]. Journal of Computer Research and Development, 2020, 57(2): 447-458. 李金海, 李玉斐, 米允龙, 等. 多粒度形式概念分析的介粒度标记方法[J]. 计算机研究与发展, 2020, 57(2): 447-458.
[16] Shao X Y, Li Y, Li L H. Transformation of no-commitment decision in coordination decision information system[J]. Jour-nal of North China University of Science and Technology (Natural Science Edition), 2018, 40(2): 100-105. 邵晓艳, 李言, 李丽红. 协调决策信息系统中不承诺决策的转化[J]. 华北理工大学学报(自然科学版), 2018, 40(2): 100-105.
[17] Chen Z H, Zhang Y, Xie G. CrC method of rule acquisition for inconsistent decision table[J]. Control and Decision, 2015, 30(4): 709-714. 陈泽华, 张裕, 谢刚. 不一致决策表规则获取的粒计算方法[J]. 控制与决策, 2015, 30(4): 709-714.
[18] Li J H, Mei C L, Xu W H, et al. Concept learning via gra-nular computing: a cognitive viewpoint[J]. Information Sci-ences, 2015, 298: 447-467. |