[1] Corkhill D D. Hierarchical planning in a distributed environ-ment[C]//Proceedings of the 6th International Joint Conference on Artificial Intelligence, Tokyo, Aug 20-24, 1979. New York: ACM, 1979: 168-175.
[2] Korf R E. Planning as search: a quantitative approach[J]. Arti-ficial Intelligence, 1987, 33(1): 65-88.
[3] Sebastia L, Onaindia E, Marzal E. Decomposition of planning problems[J]. AI Communications, 2006, 19(1): 49-81.
[4] Bibaï J, Savéant P, Schoenauer M, et al. An evolutionary meta-heuristic based on state decomposition for domain-independent satisficing planning[C]//Proceedings of the 20th International Conference on Automated Planning and Scheduling, Toronto, May 12-16, 2010. Menlo Park: AAAI, 2010: 18-25.
[5] Hu G, Miller T, Lipovetzky N. What you get is what you see: decomposing epistemic planning using functional STRIPS[J].?arXiv:1903.11777, 2019.
[6] Fox M, Long D. Hybrid STAN: identifying and managing com-binatorial optimisation sub-problems in planning[C]//Proceed-ings of the 17th International Joint Conference on Artificial Intelligence, Seattle, Aug 4-10, 2001. San Mateo: Morgan Kau-fmann, 2001: 445-450.
[7] Srivastava B. RealPlan: decoupling causal and resource reason-ing in planning[C]//Proceedings of the 17th National Con-ference on Artificial Intelligence & 12th Conference on Innovative Applications of Artificial Intelligence, Austin, Jul 30-Aug 3, 2000. Menlo Park: AAAI, 2000: 812-818.
[8] Chen Y X, Hsu C W, Wah B W. SGPlan: subgoal partition-ing and resolution in planning[C]//Proceedings of the 4th International Planning Competition: International Conference on Automated Planning and Scheduling, Whistler, Jun 3-7, 2004. Menlo Park: AAAI, 2004: 30-32.
[9] Iwen M, Mali A D. Automatic problem decomposition for distributed planning[C]//Proceedings of the 2002 International Conference on Artificial Intelligence, Las Vegas, Jun 24-27, 2002: 411-417.
[10] Yang Q. Intelligent planning: a decomposition and abstraction based approach[M]. Berlin, Heidelberg: Springer, 1997.
[11] Xie G, Pegn J, Zhang X, et al. A dynamic task planning based on task subcontracting and dynamic re-decomposition[C]//Proceedings of the 29th Chinese Control Conference,Beijing, Jul 29-31, 2010. Piscataway: IEEE, 2010: 29-31.
[12] Sacerdoti E D. Planning in a hierarchy of abstraction spaces[J]. Artificial Intelligence, 1974, 5(2): 115-135.
[13] Knoblock C A. Generating abstraction hierarchies: an auto-mated approach to reducing search in planning[M]. Hingham: Kluwer Academic Publishers, 1993.
[14] Bacchus F, Yang Q. Downward refinement and the efficiency of hierarchical problem solving[M]. New York: Elsevier Science Inc., 1994.
[15] Hoffmann J, Porteous J, Sebastia L. Ordered landmarks in planning[J]. Journal of Artificial Intelligence Research, 2004, 22(1): 215-278.
[16] Refanidis I, Vlahavas I. The GRT planning system: back-ward heuristic construction in forward state-space planning[J]. Journal of Artificial Intelligence Research, 2001, 15(1): 115-161.
[17] Li L, Shen X H, Wei Y, et al. Improved AI planner and the application on GUI test case generation of military software[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2010, 11(3): 267-273.李丽, 沈湘衡, 魏颖, 等. 一种改进的规划器算法在军用软件GUI测试用例自动生成中的应用[J]. 解放军理工大学学报(自然科学版), 2010, 11(3): 267-273.
[18] Barry J L, Kaelbling L P, Lozano-Pérez P. DetH*: approxi-mate hierarchical solution of large Markov decision pro-cesses[C]//Proceedings of the 22nd International Joint Con-ference on Artificial Intelligence, Barcelona, Jul 16-22, 2011. Menlo Park: AAAI, 2011: 1928-1935.
[19] Bai A J, Wu F, Chen X P. Online planning for large MDPs with MAXQ decomposition[C]//Proceedings of the 11th Inter-national Conference on Autonomous Agents and Multiagent Systems, Valencia, Jun 4-8, 2012. New York: ACM, 2012: 1215-1216.
[20] Siddiqui F H, Haslum P. Plan quality optimisation via block decomposition[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 2387-2393.
[21] Gopalan N, des Jardins M, Littman M L, et al. Planning with abstract Markov decision processes[C]//Proceedings of the 27th International Conference on Automated Planning and Scheduling, Pittsburgh, Jun 18-23, 2017. Menlo Park:AAAI, 2017: 480-488.
[22] Schillinger P, Bürger M, Dimarogonas D V. Decomposition of finite LTL specifications for efficient multi-agent planning[C]//Proceedings of the 13th International Symposium on Distributed Autonomous Robotic Systems, London, Nov 7-9, 2016. Berlin, Heidelberg: Springer, 2018: 253-267.
[23] Milani A, Niyogi R, Biondi G. Neural network based app-roach for learning planning action models[C]//LNCS 11624: Proceedings of the 19th International Conference on Com-putational Science and Its Applications, Saint Petersburg, Jul 1-4, 2019. Berlin, Heidelberg: Springer, 2019: 526-537.
[24] Lai Z F, Jiang Y F. Learning action model in AI planning based on genetic algorithm[J]. Chinese Journal of Computers, 2007, 30(6): 945-953.赖志锋, 姜云飞. 智能规划中基于遗传算法的动作模型学习[J]. 计算机学报, 2007, 30(6): 945-953.
[25] Leonetti M, Iocchi L, Stone P. A synthesis of automated plann-ing and reinforcement learning for efficient, robust decision[J]. Artificial Intelligence, 2016, 241: 103-130.
[26] Zheng X H, Sun X Q, Lv J X, et al. Action recognition based on deep learning and artificial intelligence planning[J]. Acta Electronica Sinica, 2019, 47(8): 1661-1668.郑兴华, 孙喜庆, 吕嘉欣, 等. 基于深度学习和智能规划的行为识别[J]. 电子学报, 2019, 47(8): 1661-1668.
[27] Lv S, Liu L, Shi L, et al. Artificial intelligence planning methods based on automated reasoning techniques[J]. Journal of Software, 2009, 20(5): 1226-1240.吕帅, 刘磊, 石莲, 等. 基于自动推理技术的智能规划方法[J]. 软件学报, 2009, 20(5): 1226-1240. |