[1] Qian C, Shi J C, Tang K, et al. Constrained monotone k-sub-modular function maximization using multiobjective evolu-tionary algorithms with theoretical guarantee[J]. IEEE Tran-sactions on Evolutionary Computation, 2017, 22(4): 595-608.
[2] Zhou Z H, Yu Y, Qian C. Evolutionary learning: advances in theories and algorithms[M]. Berlin, Heidelberg: Springer, 2019.
[3] Yu L, Hu L, Tang L. Stock selection with a novel sigmoid-based mixed discrete-continuous differential evolution algo-rithm[J]. IEEE Transactions on Knowledge and Data Engin-eering, 2016, 28(7): 1891-1904.
[4] Wang H, Hu W, Qiu Z, et al. Nodes?? evolution diversity and link prediction in social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2263-2274.
[5] Sun Y, Yen G G, Yi Z. Evolving unsupervised deep neural networks for learning meaningful representations[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(1): 89-103.
[6] Chen Y, Lin Y, Hu X M. Parallel differential evolution with multi-population and multi-strategy[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(12): 1502-1510.陈颖, 林盈, 胡晓敏. 多种群多策略的并行差分进化算法[J]. 计算机科学与探索, 2014, 8(12): 1502-1510.
[7] Sabar N R, Abawajy J, Yearwood J. Heterogeneous cooper-ative co-evolution memetic differential evolution algorithm for big data optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(2): 315-327.
[8] Storn R, Price K. Differential evolution—a simple and effi-cient adaptive scheme for global optimization over con-tinuous spaces[M]. Berkeley: ICSI, 1995: 15-20.
[9] Mezura-Montes E, Velázquez-Reyes J, Coello C A C. A com-parative study of differential evolution variants for global optimization[C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Jul 8-12, 2006. New York: ACM, 2006: 485-492.
[10] Wu M S, Deng X G. Semi-supervised pattern classification method based on Tri-DE-ELM[J]. Computer Engineering and Applications, 2018, 54(3): 109-114.吴明胜, 邓晓刚. 基于Tri-DE-ELM的半监督模式分类方法研究[J]. 计算机工程与应用, 2018, 54(3): 109-114.
[11] Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
[12] Yuan J G, Sun Z G, Qu G J. Simulation study of differential evolution[J]. Journal of System Simulation, 2007, 19(20):4646-4648.袁俊刚, 孙治国, 曲广吉. 差异演化算法的数值模拟研究[J]. 系统仿真学报, 2007, 19(20): 4646-4648.
[13] Jiang L Q, Guo Z, Liu G B. Study on the strategy of scaling factor in differential evolution algorithm[C]//Proceedings of the 1st Advanced Instrumentation, Automation and Integration Technology Conference, Chongqing/Lijiang, Dec 7, 2007: 508-510.姜立强, 郭铮, 刘光斌. 差分进化算法缩放因子取值策略研究[C]//2007年首届仪表、自动化与先进集成技术大会, 重庆·云南丽江, 2007: 508-510.
[14] Price K, Storn R M, Lampinen J A. Differential evolution: a practical approach to global optimization[M]. Berlin, Hei-delberg: Springer, 2006.
[15] Ye Q Q, Yang L H, Fu Y G, et al. Classification approach based on improved belief rule-base reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 709-721.叶青青, 杨隆浩, 傅仰耿, 等. 基于改进置信规则库推理的分类方法[J]. 计算机科学与探索, 2016, 10(5): 709-721.
[16] Wang Y, Xu B, Sun G, et al. A two-phase differential evo-lution for uniform designs in constrained experimental dom-ains[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(5): 665-680.
[17] Heredia J P. Modelling evolutionary algorithms with sto-chastic differential equations[J]. Evolutionary Computation, 2018, 26(4): 657-686.
[18] Liu C, Lin Y, Hu X M. Analyses and comparisons of dif-ferent update strategies for differential evolution[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 983-993.刘琛, 林盈, 胡晓敏. 差分演化算法各种更新策略的对比分析[J]. 计算机科学与探索, 2013, 7(11): 983-993.
[19] Sharma P, Sharma H, Kumar S, et al. A review on scale factor strategies in differential evolution algorithm[M]//Soft Computing for Problem Solving. Singapore: Springer, 2019: 925-943.
[20] Huang G B, Zhu Q Y, Siew C K. Extreme learning mach-ine: theory and applications[J]. Neurocomputing, 2006, 70: 489-501.
[21] Pang J, Gu Y, Xu J, et al. Parallel multi-graph classification using extreme learning machine and MapReduce[J]. Neuro-computing, 2017, 261: 171-183.
[22] Liu T, Lekamalage C K L, Huang G B, et al. Extreme lear-ning machine for joint embedding and clustering[J]. Neuro-computing, 2018, 277: 78-88.
[23] Liu J, Chen Y, Liu M, et al. SELM: semi-supervised ELM with application in sparse calibrated location estimation[J]. Neurocomputing, 2011, 74(16): 2566-2572.
[24] Huang G, Song S, Gupta J N D, et al. Semi-supervised and unsupervised extreme learning machines[J]. IEEE Transac-tions on Cybernetics, 2014, 44(12): 2405-2417.
[25] Zhou Y, Liu B, Xia S, et al. Semi-supervised extreme lear-ning machine with manifold and pairwise constraints regu-larization[J]. Neurocomputing, 2015, 149: 180-186.
[26] Pei H, Wang K, Lin Q, et al. Robust semi-supervised extr-eme learning machine[J]. Knowledge-Based Systems, 2018, 159: 203-220.
[27] Xie J, Liu S, Dai H. Manifold regularization based distributed semi-supervised learning algorithm using extreme learning machine over time-varying network[J]. Neurocomputing, 2019, 355: 24-34.
[28] Li K, Zhang J, Xu H, et al. A semi-supervised extreme learning machine method based on co-training[J]. Journal of Computational Information Systems, 2013, 9(1): 207-214.
[29] Wu Y L. Research on graph-based semi-supervised learning[D]. Hefei: University of Science and Technology of China, 2008.吴毓龙. 基于图的半监督学习的研究[D]. 合肥: 中国科学技术大学, 2008.
[30] Liu B, Yang Y H, Zhao Z B, et al. A batch inheritance ext-reme learning machine algorithm based on regular optimi-zation[J]. Journal of Electronics and Information Technology, 2020, 42(7): 1734-1742.刘彬, 杨有恒, 赵志彪, 等. 一种基于正则优化的批次继承极限学习机算法[J]. 电子与信息学报, 2020, 42(7): 1734-1742.
[31] Meng H Y, Zhang X H, Liu S Y. A differential evolution based on double populations for constrained multi-objective optimization problem[J]. Chinese Journal of Computers, 2008, 31(2): 228-235.孟红云, 张小华, 刘三阳. 用于约束多目标优化问题的双群体差分进化算法[J]. 计算机学报, 2008, 31(2): 228-235.
[32] Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms[J]. IEEE Transactions on Evolu-tionary Computation, 1999, 3(2): 646-657.
[33] Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646-657. |