[1] Thakkar K N, Polli F E, Joseph R M, et al. Response moni-toring, repetitive behaviour and anterior cingulate abnorma-lities in autism spectrum disorders (ASD)[J]. Brain, 2008, 131(9): 2464-2478.
[2] Hazlett H C, Gu H, Munsell B C, et al. Early brain develop-ment in infants at high risk for autism spectrum disorder[J]. Nature, 2017, 542(7641): 348-351.
[3] Tamura R, Kitamura H, Endo T, et al. Reduced thalamic vo-lume observed across different subgroups of autism spectrum disorders[J]. Psychiatry Research: Neuroimaging, 2010, 184(3): 186-188.
[4] Amaral D G, Schumann C M, Nordahl C W. Neuroanatomy of autism[J]. Trends in Neurosciences, 2007, 31(3): 137-145.
[5] Maximo J O, Keown C L, Nair A, et al. Approaches to local connectivity in autism using resting state functional connec-tivity MRI[J]. Frontiers in Human Neuroscience, 2013, 7: 605.
[6] Shukla D K, Keehn B, Müller R A. Regional homogeneity of fMRI time series in autism spectrum disorders[J]. Neuro-science Letters, 2010, 476(1): 46-51.
[7] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. Readings in Fuzzy Sets for Intelligent Systems, 1993, 15(1): 387-403.
[8] Jiang Y, Chung F L, Ishibuchi H, et al. Multitask TSK fuzzy system modeling by mining intertask common hidden structure[J]. IEEE Transactions on Cybernetics, 2015, 45(3): 548-561.
[9] Deng Z, Choi K S, Chung F L, et al. Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(2): 210-226.
[10] Deng Z, Jiang Y, Choi K S, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8): 1200-1212.
[11] Ecker C, Rocha-Rego V, Johnston P, et al. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach[J]. Neuroimage, 2010, 49(1): 44-56.
[12] Gori I, Giuliano A, Muratori F, et al. Gray matter alterations in young children with autism spectrum disorders: compar-ing morphometry at the voxel and regional level[J]. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 2015, 25(6): 866-874.
[13] Zhang Y, Wang J, Bao G Q, et al. A novel unsupervised fuzzy feature learning method for computer-aided diagnosis of autism[J]. CAAI Transactions on Intelligent Systems, 2019, 14(5): 882-888.张英, 王骏, 鲍国强, 等. 面向自闭症辅助诊断的无监督模糊特征学习新方法[J]. 智能系统学报, 2019, 14(5): 882-888.
[14] Chiu S L. Fuzzy model identification based on cluster estim-ation[J]. Journal of Intelligent and Fuzzy Systems, 1994, 2(3): 267-278.
[15] Yu G, Liu Y, Shen D. Graph-guided joint prediction of class label and clinical scores for the Alzheimer??s disease[J]. Brain Structure and Function, 2015, 221(7): 1-15.
[16] Thompson R. Graphical models in applied multivariate stati-stics[J]. Journal of Classification, 1992, 9(1): 159-160.
[17] Friedman J, Hastie T, Tibshirani R. Sparse inverse covari-ance estimation with the graphical lasso[J]. Biostatistics, 2008, 9(3): 432-441.
[18] Zou H. The adaptive lasso and its oracle properties[J]. Jour-nal of Industrial and Management Optimization, 2006, 101(476): 1418-1429.
[19] Li H Y. The diagnostic value of serum cystatin C by the receiver operating characteristic curve in early diagnosis of nephropathy[J]. Chinese Journal of Laboratory Diagnosis, 2017, 21(6): 958-960.李红艳. ROC曲线评价血清胱抑素C对早期肾功能损伤的临床诊断价值[J]. 中国实验诊断学, 2017, 21(6): 958-960.
[20] Tibshirani R. The lasso method for variable selection in the Cox model[J]. Statistics in Medicine, 1997, 16(4): 385-395.
[21] Juang C F, Chiu S H, Shiu S J. Fuzzy system learned thro-ugh fuzzy clustering and support vector machine for human skin color segmentation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(6): 1077-1087.
[22] Wang J, Wang Q, Peng J, et al. Multi-task diagnosis for autism spectrum disorders using multi-modality features: a multi-center study[J]. Human Brain Mapping, 2017, 38(6): 3081-3097. |