[1] MORRIS S A, YEN G G. Construction of bipartite and uni-partite weighted networks from collections of journal papers[J]. arXiv:physics/0503061, 2005.
[2] BHAGAT S, CORMODE G, MUTHUKRISHNAN S, et al. Node classification in social networks[J]. arXiv:1101.3291, 2011.
[3] LYU L, ZHOU T. Link prediction in complex networks: a survey[J]. Physica A: Statistical Mechanics and Its Applica-tions, 2011, 390(6): 1150-1170.
[4] FORTUNATO S. Community detection in graphs[J]. Physics Reports, 2010, 486: 75-174.
[5] CHEN J, WU Y, FAN L, et al. N2VSCDNNR: a local reco-mmender system based on node2vec and rich information network[J]. IEEE Transactions on Computational Social Sys-tems, 2019, 6(3): 456-466.
[6] SHI C, HU B B, ZHAO W X, et al. Heterogeneous infor-mation network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370.
[7] LAURENS V D M, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
[8] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[9] GROVER A, LESKOVEC J. Node2vec: scalable feature lear-ning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864.
[10] TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 1067-1077.
[11] WANG D X, CUI P, ZHOU W W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1225-1234.
[12] YU L, ZHANG C, PEI S, et al. WalkRanker: a unified pair-wise ranking model with multiple relations for item recom-mendation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 2596-2603.
[13] ALZAHRANI T, HORADAM K J, BOZTAS S. Community detection in bipartite networks using random walks[C]//Pro-ceedings of the 5th Workshop on Complex Networks, Bologna, Mar 12-14, 2014. Berlin, Heidelberg: Springer, 2014: 157-165.
[14] DONG Y X, CHAWLA N V, SWAMI A, et al. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 135-144.
[15] GAO M, CHEN L, HE X, et al. BiNE: bipartite network embedding[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Infor-mation Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 715-724.
[16] GAO M, HE X, CHEN L, et al. Learning vertex represen-tations for bipartite networks[J]. arXiv:1901.09676, 2019.
[17] SYBRANDT J, SAFRO I. FOBE and HOBE: first- and high-order bipartite embeddings[J]. arXiv:1905.10953, 2019.
[18] NARITA A, HAYASHI K, TOMIOKA R, et al. Tensor fac-torization using auxiliary information[J]. Data Mining and Knowledge Discovery, 2012, 25(2): 298-324.
[19] RAFAILIDIS D, NANOPOULOS A. Modeling users prefer-ence dynamics and side information in recommender sys-tems[J]. IEEE Transactions on Systems, Man, and Cyberne-tics: Systems, 2016, 46(6): 782-792.
[20] WANG Z, ZHANG D Q, ZHOU X S, et al. Discovering and profiling overlapping communities in location-based social networks[J]. IEEE Transactions on Systems, Man, and Cybe-rnetics: Systems, 2014, 44(4): 499-509.
[21] XUAN Q, FANG H, FU C, et al. Temporal motifs reveal collaboration patterns in online task-oriented networks[J]. Physical Review E, 2015, 91(5): 52813-52813.
[22] SCHEIN A I, POPESCUL A, UNGAR L H, et al. Methods and metrics for cold-start recommendations[C]//Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Aug 11-15, 2002. New York: ACM, 2002: 253-260.
[23] LIAO L Z, HE X N, ZHANG H W, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge & Data Engineering, 2018, 30(12): 2257-2270.
[24] BEEL J, LANGER S, NURNBERGER A, et al. The impact of demographics (age and gender) and other user-charac-teristics on evaluating recommender systems[C]//LNCS 8092: Proceedings of the International Conference on Theory and Practice of Digital Libraries, Valletta, Sep 22-26, 2013. Berlin, Heidelberg: Springer, 2013: 396-400.
[25] YANG C, LIU Z Y, ZHAO D L, et al. Network representation learning with rich text information[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25- 31, 2015. Menlo Park: AAAI, 2015: 2111-2117.
[26] TU C C, LIU H, LIU Z Y, et al. CANE: context-aware network embedding for relation modeling[C]//Proceedings of the 55th Annual Meeting of the Association for Computa-tional Linguistics, Vancouver, Jul 30-Aug 4, 2017. Strou-dsburg: ACL, 2017: 1722-1731.
[27] JACOB Y, DENOYER L, GALLINARI P. Learning latent representations of nodes for classifying in heterogeneous social networks[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, Feb 24-28, 2014. New York: ACM, 2014: 373-382.
[28] DENG H B, LYU M R, KING I. A generalized Co-HITS algorithm and its application to bipartite graphs[C]//Procee-dings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 239-248.
[29] MASROUR F, TAN P N, ESFAHANIAN A H, et al. Attributed network representation learning approaches for link prediction[C]//Proceedings of the 2018 International Conference on Advances in Social Networks Analysis and Mining, Barcelona, Aug 28-31, 2018: 560-563.
[30] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositio-nality[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 3111-3119.
[31] WANG H, CAO J, SHU L C, et al. Locality sensitive hashing revisited: filling the gap between theory and algorithm ana-lysis[C]//Proceedings of the 22nd ACM International Con-ference on Information and Knowledge Management, San Fran-cisco, Oct 27-Nov 1, 2013. New York: ACM, 2013: 1969-1978. |