计算机科学与探索 ›› 2010, Vol. 4 ›› Issue (12): 1101-1108.DOI: 10.3778/j.issn.1673-9418.2010.12.004

• 学术研究 • 上一篇    下一篇

用于社团发现的Girvan-Newman改进算法

朱小虎1,2, 宋文军1,2, 王崇骏1,2+, 谢俊元1,2   

  1. 1. 南京大学 计算机软件新技术国家重点实验室, 南京 210093
    2. 南京大学 计算机科学与技术系, 南京 210093
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2010-12-01 发布日期:2010-12-01
  • 通讯作者: 王崇骏

Improved Algorithm Based on Girvan-Newman Algorithm for Community Detection

ZHU Xiaohu1,2, SONG Wenjun1,2, WANG Chongjun1,2+, XIE Junyuan1,2   

  1. 1. National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
    2. Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China

  • Received:1900-01-01 Revised:1900-01-01 Online:2010-12-01 Published:2010-12-01
  • Contact: ZHU Xiaohu1,2, SONG Wenjun1,2, WANG Chongjun1,2+, XIE Junyuan1,2

摘要: 为了克服Girvan-Newman算法运行效率的不足, 提出了一个基于modularity极值近似的社团发现算法MEA。该算法采用modularity增量作为社团结构的度量, 使用贪心策略获得最优社团分划的近似解。通过理论分析, 并在实际的数据集上进行实验验证, 结果表明MEA算法是快速、有效的。

关键词: 社会网络分析, 社团结构发现, Girvan-Newman算法, 贪心策略

Abstract: To improve the efficiency of Girvan-Newman(G-N) algorithm, a community detection algorithm named modularity extreme approximation (MEA) is given. MEA algorithm uses the increment of modularity as the meas-ure for community structure and finds the solution with a greedy strategy. The theoretical analysis and experimental results show the MEA algorithm is more effective and faster than the G-N algorithm.

Key words: social networks analysis, community structure detection, Girvan-Newman algorithm, greedy strategy

中图分类号: