[1] |
张磊, 马春光, 杨松涛, 等. 关联概率不可区分的位置隐私保护方法[J]. 通信学报, 2017, 38(8): 37-49.
|
|
ZHANG L, MA C G, YANG S T, et al. Correlation probabi-lity indistinguishable location privacy protection algorithm[J]. Journal on Communications, 2017, 38(8): 37-49.
DOI
URL
|
[2] |
VERGARA-LAURENS I J, JAIMES L G, LABRADOR M A. Privacy-preserving mechanisms for crowdsensing: survey and research challenges[J]. IEEE Internet of Things Journal, 2017, 4(4): 855-869.
DOI
URL
|
[3] |
WANG Y, CAI Z, TONG X, et al. Truthful incentive mec-hanism with location privacy-preserving for mobile crowd-sourcing systems[J]. Computer Networks, 2018, 135: 32-43.
DOI
URL
|
[4] |
SUN J C, ZHANG R, JIN X C, et al. SecureFind: secure and privacy-preserving object finding via mobile crowdsour-cing[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 1716-1728.
DOI
URL
|
[5] |
ZHANG L, CHEN M, LIU D, et al. A ε-sensitive indis-tinguishable scheme for privacy preserving[J]. Wireless Net-works, 2020, 26(7): 5013-5033.
|
[6] |
SHU J G, JIA X H, KAN Y, et al. Privacy-preserving task recommendation services for crowdsourcing[J]. IEEE Tran-sactions on Services Computing, 2021, 14(1): 235-247.
|
[7] |
ZHANG Y H, LI M, YANG D J, et al. Tradeoff between location quality and privacy in crowdsensing: an optimiza-tion perspective[J]. IEEE Internet of Things Journal, 2020, 7(4): 3535-3544.
DOI
URL
|
[8] |
WEI J H, LIN Y P, YAO X, et al. Differential privacy-based location protection in spatial crowdsourcing[J]. IEEE Tran-sactions on Services Computing, 2022, 15(1): 45-58.
|
[9] |
LUO G C, YAN K, ZHENG X, et al. Preserving adjustable path privacy for task acquisition in mobile crowdsensing systems[J]. Information Sciences, 2020, 527: 602-619.
DOI
URL
|
[10] |
ZOU S H, XI J W, WANG H G, et al. CrowdBLPS: a blockchain-based location-privacy-preserving mobile crowd-sensing system[J]. IEEE Transactions on Industrial Infor-matics, 2020, 16(6): 4206-4218.
|
[11] |
YANG M M, ZHU T Q, XIANG Y, et al. Density-based location preservation for mobile crowdsensing with diffe-rential privacy[J]. IEEE Access, 2018, 6: 14779-14789.
DOI
URL
|
[12] |
YANG M, ZHU T, LIANG K, et al. A blockchain-based location privacy-preserving crowdsensing system[J]. Future Generation Computer Systems, 2019, 94: 408-418.
DOI
URL
|
[13] |
HE Y Y, NI J B, NIU B, et al. Privbus: a privacy-enhanced crowdsourced bus service via fog computing[J]. Journal of Parallel and Distributed Computing, 2020, 135: 156-168.
DOI
URL
|
[14] |
WANG L Y, ZHANG D Q, YANG D Q, et al. Sparse mobile crowdsensing with differential and distortion location privacy[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2735-2749.
DOI
URL
|
[15] |
YUAN D, LI Q, LI G L, et al. PriRadar: a privacy-preserving framework for spatial crowdsourcing[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 299-314.
DOI
URL
|
[16] |
赵子军, 应作斌, 杨钊, 等. 结合区块链和车辆社交网络的车队成员推荐[J]. 西安电子科技大学学报(自然科学版), 2020, 47(5): 122-129.
|
|
ZHAO Z J, YING Z B, YANG Z, et al. Recommendation of platoon members by combining the blockchain and vehicu-lar social network[J]. Journal of Xidian University (Natural Science), 2020, 47(5): 122-129.
|