[1] ERDOS P, HAJNAL A. On the chromatic number of graphs and set systems[J]. Acta Mathematica Academiae Scientiarum Hungarica, 1966, 17: 61-99.
[2] BERGE C. Graphs and hypergraphs[M]. Amsterdam: North-Holland Publishing Company, 1973.
[3] ESTRADA E, RODRIGUES V R. Subgraph centrality in complex networks[J]. Physical Review E, 2005, 71(5): 1-9.
[4] LIU S J, LI T R, HORNG S J, et al. Hypernetwork model and its properties[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(2): 194-211.
刘胜久, 李天瑞, 洪西进, 等. 超网络模型构建及特性分析[J]. 计算机科学与探索, 2017, 11(2): 194-211.
[5] LIU S J, LI T R, YANG Z L, et al. Measure and properties of weighted hypernetwork[J]. Journal of Computer Applica-tions, 2019, 39(11): 3107-3113.
刘胜久, 李天瑞, 杨宗霖, 等. 带权超网络的度量方法及其性质[J]. 计算机应用, 2019, 39(11): 3107-3113.
[6] LIU S J, LI T R, LIU J, et al. Research on multi-fractals of weighted hypernetwork[J]. Journal of University of Science and Technology of China, 2020, 50(3): 369-381.
刘胜久, 李天瑞, 刘佳, 等. 带权超网络的多重分形研究[J]. 中国科学技术大学学报, 2020, 50(3): 369-381.
[7] GUTMAN I. The energy of a graph[J]. Berichte der Mathe-matisch-Statistischen Sektion im Forschungszentrum Graz, 1978, 103: 1-22.
[8] ADIGA C, BALAKRISHNAN R, SO W. The skew energy of a digraph[J]. Linear Algebra and Its Applications, 2010, 432: 1825-1835.
[9] LIU J X, LI X L. Hermitian-adjacency matrices and Hermi-tian energies of mixed graphs[J]. Linear Algebra and Its Applications, 2015, 466: 182-207.
[10] INDULAL G, GUTMAN I, VIJAYAKUMAR A. On distance energy of graphs[J]. MATCH Communications in Mathema-tical and in Computer Chemistry, 2008, 60: 461-472.
[11] LIU J P, LIU B L. A Laplacian-energy like invariant of a graph[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2008, 59: 355-372.
[12] JOOYANDEH M, KIANI D, MIRZAKHAH M. Incidence energy of a graph[J]. MATCH Communications in Mathe-matical and in Computer Chemistry, 2009, 62: 561-572.
[13] GUTMAN I, WAGNER S. The matching energy of a graph[J]. Discrete Applied Mathematics, 2012, 160: 2177-2187.
[14] GUTMAN I, ZHOU B. Laplacian energy of a graph[J]. Linear Algebra and Its Applications, 2006, 414: 29-37.
[15] SO W, ROBBIANO M, DE ABREU N. Applications of a theorem by Ky Fan in the theory of graph energy[J]. Linear Algebra and Its Applications, 2010, 432: 2163-2169.
[16] BRYC W, DEMBO A, JIANG T. Spectral measure of large random Hankel, Markov and Toeplitz matrices[J]. The Annals of Probability, 2006, 34: 1-38.
[17] DASA K, AOUCHICHE M, HANSEN P. On (distance) Lapl-acian energy and (distance) signless Laplacian energy of gr-aphs[J]. Discrete Applied Mathematics, 2018, 243: 172-185.
[18] LIU S J, LI T R, LIU X W. Network dimension: a new mea-sure for complex networks[J]. Computer Science, 2019, 46(1): 51-56.
刘胜久, 李天瑞, 刘小伟. 网络维数: 一种度量复杂网络的新方法[J]. 计算机科学, 2019, 46(1): 51-56.
[19] LIU S J, LI T R, ZHU J, et al. Network energy: a new energy of a graph[C]//Proceedings of the 14th IEEE International Con-ference on Intelligent Systems and Knowledge Engineering, Dalian, Nov 14-16, 2019. Piscataway: IEEE, 2019: 785-789.
[20] LIU S J, LI T R, ZHANG X B, et al. On network energy of oriented graphs[C]//Proceedings of the 14th International FLINS Conference on Robotics and Artificial Intelligence/IEEE 15th International Conference on Intelligent Systems and Knowledge Engineering, Cologne, Sep 30-Oct 3, 2020. Singapore: World Scientific, 2020: 11-18.
[21] WANG W Z, ZHOU K Q. On the Hermitian-incidence energy of mixed graphs[J]. Journal of Shandong University (Natural Science), 2019, 54(6): 53-58.
王维忠, 周琨强. 混合图的埃尔米特-关联能量[J]. 山东大学学报(理学版), 2019, 54(6): 53-58.
[22] WANG J F. Theoretical principle of hypergraph[M]. Beijing: Higher Education Press, 2006.
王建方. 超图的理论基础[M]. 北京: 高等教育出版社, 2006. |