[1] HAN J G, SHAO L, XU D, et al. Enhanced computer vision with microsoft kinect sensor: a review[J]. IEEE Transactions on Cybernetics, 2013, 43(5): 1318-1334.
[2] YE M, ZHANG Q, WANG L, et al. A survey on human motion analysis from depth data[M]//Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Berlin, Heidelberg: Springer, 2013: 149-187.
[3] CAI Q, DENG Y B, LI H S, et al. Survey on human action recognition based on deep learning[J]. Computer Science, 2020, 47(4): 85-93.
蔡强, 邓毅彪, 李海生, 等. 基于深度学习的人体行为识别方法综述[J]. 计算机科学, 2020, 47(4): 85-93.
[4] YANG X D, TIAN Y L. Eigenjoints-based action recognition using Naive-Bayes-nearest-neighbor[C]//Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 14-19.
[5] YANG X D, TIAN Y L. Effective 3D action recognition using eigenjoints[J]. Journal of Visual Communication and Image Representation, 2014, 25(1): 2-11.
[6] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
[7] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[8] KIPF T, FETAYA E, WANG K C, et al. Neural relational inference for interacting systems[J]. arXiv:1802.04687, 2018.
[9] DU Y, WANG W, WANG L. Hierarchical recurrent neural network for skeleton based action recognition[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1110-1118.
[10] LIU H, TU J H, LIU M Y. Two-stream 3D convolutional neural network for skeleton-based action recognition[J]. arXiv:1705.08106, 2017.
[11] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018.
[12] SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 12026-12035.
[13] ZHANG P F, LAN C L, ZENG W J, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1112-1121.
[14] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogni-tion, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 4700-4708.
[15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778.
[16] LI M S, CHEN S H, CHEN X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 3595-3603.
[17] ZHANG P F, LAN C L, XING J L, et al. View adaptive neural networks for high performance skeleton-based human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1963-1978.
[18] SI C Y, CHEN W T, WANG W, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 1227-1236.
[19] LIU J, SHAHROUDY A, PEREZ M L, et al. NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding[J]. arXiv:1905.04757v1, 2019.
[20] SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+D: a large scale dataset for 3D human activity analysis[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1010-1019.
[21] LIAO S J, LYONS T, YANG W X, et al. Learning stochastic differential equations using RNN with log signature features[J]. arXiv:1908.08286, 2019.
[22] LIU M Y, YUAN J S. Recognizing human actions as the evolution of pose estimation maps[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1159-1168.
[23] PAPADOPOULOS K, GHORBEL E, AOUADA D, et al. Vertex feature encoding and hierarchical temporal modeling in a spatial-temporal graph convolutional network for action recognition[J]. arXiv:1912.09745, 2019.
[24] CAETANO C, BRéMOND F, SCHWARTZ W R. Skeleton image representation for 3D action recognition based on tree structure and reference joints[C]//Proceedings of the 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images, Rio de Janeiro, Oct 28-30, 2019. Piscataway: IEEE, 2019: 16-23. |