[1] JEON S, MOON J. Malware-detection method with a con-volutional recurrent neural network using opcode sequences[J]. Information Sciences, 2020, 535: 1-15.
[2] KAKISIM A G, NAR M, SOGUKPINAR I. Metamorphic malware identification using engine-specific patterns based on co-opcode graphs[J]. Computer Standards & Interfaces, 2020, 71: 103443.
[3] ZHANG J X, QIN Z, YIN H, et al. A feature-hybrid malware variants detection using CNN based opcode embedding and BPNN based API embedding[J]. Computers & Security, 2019, 84: 376-392.
[4] LU X F, JIANG F S, ZHOU X, et al. ASSCA: API sequence and statistics features combined architecture for malware detection[J]. Computer Networks, 2019, 157: 99-111.
[5] AMER E, ZELINKA I. A dynamic windows malware detec-tion and prediction method based on contextual understand-ing of API call sequence[J]. Computers & Security, 2020, 92: 101760.
[6] HUANG K M, ZHANG L, ZHAO K, et al. Malware detec-tion based on longest frequent API sequence[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(4): 681-688.
黄琨茗, 张磊, 赵奎, 等. 基于最长频繁序列挖掘的恶意 代码检测[J]. 四川大学学报(自然科学版), 2020, 57(4): 681-688.
[7] ZHENG R, WANG Q Y, FU J M, et al. A novel malware classification model based on deep learning[J]. Journal of Cyber Security, 2020, 5(1): 1-9.
郑锐, 汪秋云, 傅建明, 等. 一种基于深度学习的恶意软件家族分类模型[J]. 信息安全学报, 2020, 5(1): 1-9.
[8] ZHAO C R, ZHANG W J, FANG Y, et al. Malware detec-tion based on semantic API dependency graph[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(3): 488-494.
赵翠镕, 张文杰, 方勇, 等. 基于语义API依赖图的恶意代码检测[J]. 四川大学学报(自然科学版), 2020, 57(3): 488-494.
[9] ZHANG L, LAI Y, YE X J. Attention mechanism based detection of malware call sequences[J]. Computer Science, 2019, 46(12): 132-137.
张岚, 来耀, 叶晓俊. 基于注意力机制的恶意软件调用序列检测[J]. 计算机科学, 2019, 46(12): 132-137.
[10] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images: visualization and automatic classification[C]//Proceed-ings of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, Jul 20, 2011. New York: ACM, 2011: 1-7.
[11] VASAN D, ALAZAB M, WASSAN S, et al. IMCFN: image-based malware classification using fine-tuned convolutional neural network architecture[J]. Computer Networks, 2020, 171: 107138.
[12] FU J W, XUE J F, WANG Y, et al. Malware visualization for fine-grained classification[J]. IEEE Access, 2018, 6: 14510-14523.
[13] YAKURA H, SHINOZAKI S, NISHIMURA R, et al. Neural malware analysis with attention mechanism[J]. Computers & Security, 2019, 87: 101592.
[14] LU X D, DUAN Z M, QIAN Y K, et al. Malicious code classification method based on deep forest[J]. Journal of Software, 2020, 31(5): 1454-1464.
卢喜东, 段哲民, 钱叶魁, 等. 一种基于深度森林的恶意代码分类方法[J]. 软件学报, 2020, 31(5): 1454-1464.
[15] XIAO G, LI J, CHEN Y, et al. MalFCS: an effective malware classification framework with automated feature extraction based on deep convolutional neural networks[J]. Journal of Parallel and Distributed Computing, 2020, 141: 49-58.
[16] YUAN B G, WANG J F, LIU D, et al. Byte-level malware classification based on Markov images and deep learning[J]. Computers & Security, 2020, 92: 101740.
[17] CHOLLET F. Xception: deep learning with depthwise separ-able convolutions[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Hono-lulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1800-1807.
[18] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 3-19.
[20] SEBASTIáN M, RIVERA R, KOTZIAS P, et al. AVclass: a tool for massive malware labeling[C]//LNCS 9854: Proceed-ings of the 19th International Symposium on Research in Attacks, Intrusions, and Defenses, Paris, Sep 19-21, 2016. Berlin, Heidelberg: Springer, 2016: 230-253. |