[1] CHEN M S, HAN J, YU P S. Data mining: an overview from a database perspective[J]. IEEE Transactions on Know-ledge & Data Engineering, 1996, 8(6): 866-883.
[2] HAN J W, KAMBER M. Data mining: concepts and tech-niques[M]. San Mateo: Morgan Kaufmann, 2006.
[3] RODRIGUEZ A, LAIO A. Clustering by fast search and ?nd of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[4] BAI L, CHENG X, LIANG J, et al. Fast density clustering strategies based on the k-means algorithm[J]. Pattern Recogni-tion, 2017, 71: 375-386.
[5] WANG Y, PENG T, HAN J Y, et al. Density-based distributed clustering method[J]. Journal of Software, 2017, 28(11): 2836-2850.
王岩, 彭涛, 韩佳育, 等. 一种基于密度的分布式聚类方法[J]. 软件学报, 2017, 28(11): 2836-2850.
[6] LIU R, WANG H, YU X M. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Infor-mation Sciences, 2018, 450: 200-226.
[7] DU M J, DING S F, JIA H J. Study on density peaks cluster-ing based on k-nearest neighbors and principal component analysis[J]. Knowledge Based Systems, 2016, 99: 135-145.
[8] XIE J Y, GAO H C, XIE W X, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
[9] XU X, DING S F, SUN T F. A fast density peaks clustering algorithm based on pre-screening[C]//Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing, Shanghai, Jan 15-17, 2018. Washington: IEEE Computer Society, 2018: 513-516.
[10] SEYEDI S A, LOTFI A, MORADI M, et al. Dynamic graph-based label propagation for density peaks clustering[J]. Expert Systems with Applications, 2019, 115: 314-328.
[11] HUANG J L, ZHU Q S, YANG L J, et al. QCC: a novel clustering algorithm based on quasi-cluster centers[J]. Machine Learning, 2017, 106(3): 337-357.
[12] WU C R, LEE J, ISOKAWA T, et al. Efficient clustering method based on density peaks with symmetric neighbor-hood relationship[J]. IEEE Access, 2019, 7: 60684-60696.
[13] DU P, CHENG X R. Comparative density peaks clustering based on K-nearest neighbors[J]. Computer Engineering and Applications, 2019, 55(10): 161-168.
杜沛, 程晓荣. 一种基于K近邻的比较密度峰值聚类算法[J]. 计算机工程与应用, 2019, 55(10): 161-168.
[14] QIAN X Z, JIN H. Optimized density peak clustering algo-rithm by adaptive aggregation strategy[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 712-720.
钱雪忠, 金辉. 自适应聚合策略优化的密度峰值聚类算法[J]. 计算机科学与探索, 2020, 14(4): 712-720.
[15] WANG J H, LI J J, LI J S, et al. Adaptive fast search density peak clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(24): 122-127.
王军华, 李建军, 李俊山, 等. 自适应快速搜索密度峰值聚类算法[J]. 计算机工程与应用, 2019, 55(24): 122-127.
[16] XU X, DING S F, SHI Z Z. An improved density peaks clustering algorithm with fast finding cluster centers[J]. Know-ledge Based Systems, 2018, 158: 65-74.
[17] ZHU Q S, FENG J, HUANG J L. Natural neighbor: a self-adaptive neighborhood method without parameter K[J]. Pattern Recognition Letters, 2016, 80: 30-36.
[18] CHENG D, ZHU Q, HUANG J, et al. Natural neighbor-based clustering algorithm with density peeks[C]//Proceed-ings of the 2016 International Joint Conference on Neural Networks, Jul 24-29, 2016. Piscataway: IEEE, 2016: 92-98.
[19] YANG P, ZHU Q S, HUANG B. Spectral clustering with density sensitive similarity function[J]. Knowledge Based Systems, 2011, 24(5): 621-628.
[20] FU L M, MEDICO E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data[J]. BMC Bioinformatics, 2007, 8(1): 3.
[21] CHANG H, YEUNG D Y. Robust path-based spectral cluster-ing[J]. Pattern Recognition, 2008, 41(1): 191-203.
[22] JAIN A K, LAW M H C. Data clustering: a user??s dilemma[C]//LNCS 3776: Proceedings of the 1st International Con-ference on Pattern Recognition and Machine Intelligence, Kolkata, Dec 20-22, 2005. Berlin, Heidelberg: Springer, 2005: 1-10.
[23] VEENMAN C J, REINDERS M J T, BACKER E. A maximum variance cluster algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1273-1280.
[24] GIONIS A, MANNILA H, TSAPARAS P. Clustering aggrega-tion[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 4.
[25] NGUYEN X V, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of Machine Learning Research, 2010, 11(1): 2837-2854.
[26] FOWLKES E B, MALLOWS C L. A method for compar-ing two hierarchical clusterings[J]. Journal of the American Statistical Association, 1983, 78(383): 553-569.
[27] ESTER M, KRIEGEL H P, SANDER J. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Con-ference on Knowledge Discovery and Data Mining, Port-land, Aug 2-4, 1996. Menlo Park: AAAI, 1996: 226-231.
[28] HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28(1): 100-108. |