[1] PRAWESH S, PADMANABHAN B. The “top N” news recommender: count distortion and manipulation resistance[C]//Proceedings of the 2011 ACM Conference on Recommender Systems, Chicago, Oct 23-27, 2011. New York: ACM, 2011: 237-244.
[2] GULLA J A, YU B, ?ZG?BEK ?, et al. 3rd International Workshop on News Recommendation and Analytics (INRA 2015)[C]//Proceedings of the 9th ACM Conference on Recommender Systems, Vienna, Sep 16-20, 2015. New York: ACM, 2015: 345-346.
[3] ZHAO X, WANG C, CHEN M, et al. AutoEmb: automated embedding dimensionality search in streaming recommendations[J]. arXiv:2002.11252, 2020.
[4] XU J, HE X N, LI H. Deep learning for matching in search and recommendation[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 1365-1368.
[5] KAZAI G, YUSOF I, CLARKE D. Personalised news and blog recommendations based on user location, facebook and Twitter user profiling[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Jul 17-21, 2016. New York: ACM, 2016: 1129-1132.
[6] KARKALI M, PONTIKIS D, VAZIRGIANNIS M. Match the news: a firefox extension for real-time news recommendation[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Jul 28 - Aug 1, 2013: 1117-1118.
[7] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[8] ZHANG S, YAO L, SUN A, et al. Deep learning based recommender system: a survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38.
[9] HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.
黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
[10] WANG S Q, LI X X, SUN F Z, et al. Survey of research on personalized news recommendation techniques[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 18-29.
王绍卿, 李鑫鑫, 孙福振, 等. 个性化新闻推荐技术研究综述[J]. 计算机科学与探索, 2020, 14(1): 18-29.
[11] LI M, WANG L. A survey on personalized news recommendation technology[J]. IEEE Access, 2019, 7: 145861-145879.
[12] LIANG S W, ZHANG C R, CAO L, et al. Collaborative joint embedding based on personalized news recommendation[J]. Journal of Chinese Information Processing, 2018, 32(11): 72-78.
梁仕威, 张晨蕊, 曹雷, 等. 基于协同表示学习的个性化新闻推荐[J]. 中文信息学报, 2018, 32(11): 72-78.
[13] LIU J H, DOLAN P, PEDERSEN E R. Personalized news recommendation based on click behavior[C]//Proceedings of the 15th International Conference on Intelligent User Interfaces, Hong Kong, China, Feb 7-10, 2010. New York: ACM, 2010: 31-40.
[14] KELLY D, TEEVAN J. Implicit feedback for inferring user preference: a bibliography[J]. SIGIR Forum, 2003, 37(2): 18-28.
[15] WU X, HUANG B, FANG Z J, et al. Application of sequence generative adversarial network in recommendation system[J]. Computer Engineering and Applications, 2020, 56(23): 175-179.
伍鑫, 黄渤, 方志军, 等. 序列生成对抗网络在推荐系统中的应用[J]. 计算机工程与应用, 2020, 56(23): 175-179.
[16] PENG Y, ZHU W, ZHAO Y, et al. Cross-media analysis and reasoning: advances and directions[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[17] CHAUDHARI S, POLATKAN G, RAMANATH R, et al. An attentive survey of attention models[J]. arXiv:1904. 02874, 2019.
[18] WANG X J, YU L T, REN K, et al. Dynamic attention deep model for article recommendation by learning human editors?? demonstration[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 2051-2059.
[19] ZHANG L, LIU P, GULLA J A. A deep joint network for session-based news recommendations with contextual augmentation[C]//Proceedings of the 29th on Hypertext and Social Media, Baltimore, Jul 9-12, 2018. New York: ACM, 2018: 201-209.
[20] DE SOUZA PEREIRA MOREIRA G. CHAMELEON: a deep learning meta-architecture for news recommender systems[C]//Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2-7, 2018. New York: ACM, 2018: 578-583.
[21] ZHANG L, LIU P, GULLA J A. Dynamic attention-integrated neural network for session-based news recommendation[J]. Machine Learning, 2019, 108(10): 1851-1875.
[22] ZHU Q N, ZHOU X F, SONG Z L, et al. DAN: deep attention neural network for news recommendation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5973-5980.
[23] OKURA S, TAGAMI Y, ONO S, et al. Embedding-based news recommendation for millions of users[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13- 17, 2017. New York: ACM, 2017: 1933-1942.
[24] WU C H, WU F Z, AN M X, et al. NPA: neural news recommendation with personalized attention[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 2576-2584.
[25] AN M X, WU F Z, WU C H, et al. Neural news recommendation with long-and short-term user representations[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 336-345.
[26] WU C, WU F, AN M, et al. Neural news recommendation with attentive multi-view learning[J]. arXiv:1907.05576, 2019.
[27] WU C, WU F, GE S, et al. Neural news recommendation with multi-head self-attention[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 6388-6393.
[28] WU C H, WU F Z, QI T, et al. User modeling with click preference and reading satisfaction for news recommendation [C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jul 2020: 3023-3029.
[29] YANG B, MITCHELL T. Leveraging knowledge bases in LSTMs for improving machine reading[J]. arXiv:1902. 09091, 2019.
[30] WANG J, WANG Z Y, ZHANG D W, et al. Combining knowledge with deep convolutional neural networks for short text classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 2915-2921.
[31] XU C, BAI Y L, BIAN J, et al. RC-NET: a general framework for incorporating knowledge into word representations[C]//Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, Shanghai, Nov 3-7, 2014. New York: ACM, 2014: 1219-1228.
[32] WANG H W, ZHANG F Z, XIE X, et al. DKN: deep know-ledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844.
[33] GAO J, XIN X, LIU J S, et al. Fine-grained deep knowledge- aware network for news recommendation with self-attention[C]//Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence, Santiago, Dec 3-6, 2018. Washington: IEEE Computer Society, 2018: 81-88.
[34] XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780.
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
[35] SHEU H S, LI S. Context-aware graph embedding for session-based news recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems, Virtual Event, Sep 22-26, 2020: 657-662.
[36] LEE D, OH B, SEO S, et al. News recommendation with topic-enriched knowledge graphs[C]//Proceedings of the 29th ACM International Conference on Information and Know-ledge Management, Virtual Event, Oct 19-23, 2020. New York: ACM, 2020: 695-704.
[37] COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 191-198.
[38] WANG X, HE X N, NIE L Q, et al. Item silk road: recommending items from information domains to social users[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Aug 7-11, 2017. New York: ACM, 2017: 185-194.
[39] LIAN J X, ZHANG F Z, XIE X, et al. Towards better representation learning for personalized news recommendation: a multi-channel deep fusion approach[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Jul 13-19, 2018: 3805-3811.
[40] WANG H Y, WU F Z, LIU Z, et al. Fine-grained interest matching for neural news recommendation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 836-845.
[41] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016.
[42] PARK K, LEE J, CHOI J. Deep neural networks for news recommendations[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 2255-2258.
[43] KHATTAR D, KUMAR V, VARMA V, et al. HRAM: a hybrid recurrent attention machine for news recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 1619-1622.
[44] CHU Q F, LIU G S, SUN H R, et al. Next news recommendation via knowledge-aware sequential model[C]//LNCS 11856: Proceedings of the 18th China National Conference on Chinese Computational Linguistics, Kunming, Oct 18-20, 2019. Berlin, Heidelberg: Springer, 2019: 221-232.
[45] KUMAR V, KHATTAR D, GUPTA S, et al. Word semantics based 3-d convolutional neural networks for news recommendation[C]//Proceedings of the 2017 IEEE International Conference on Data Mining Workshops, New Orleans, Nov 18-21, 2017. Washington: IEEE Computer Society, 2017: 761-764.
[46] JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(1): 221-231.
[47] KHATTAR D, KUMAR V, VARMA V, et al. Weave&Rec: a word embedding based 3-d convolutional network for news recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 1855-1858.
[48] CAO S X, YANG N, LIU Z Z. Online news recommender based on stacked auto-encoder[C]//Proceedings of the 16th IEEE/ACIS International Conference on Computer and Information Science, Wuhan, May 24-26, 2017. Washington: IEEE Computer Society, 2017: 721-726.
[49] HU L M, XU S Y, LI C, et al. Graph neural news recommendation with unsupervised preference disentanglement[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 4255-4264.
[50] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
[51] GE S Y, WU C H, WU F Z, et al. Graph enhanced representation learning for news recommendation[C]//Proceedings of the Web Conference, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2863-2869.
[52] GULLA J A, ZHANG L M, LIU P, et al. The Adressa dataset for news recommendation[C]//Proceedings of the 2017 International Conference on Web Intelligence, Leipzig, Aug 23-26, 2017. New York: ACM, 2017: 1042-1048.
[53] KILLE B, HOPFGARTNER F, BRODT T, et al. The plista dataset[C]//Proceedings of the 2013 International News Recommender Systems Workshop and Challenge, Oct 2013. New York: ACM, 2013: 16-23.
[54] CANTADOR I, BRUSILOVSKY P, KUFLIK T. Second workshop on information heterogeneity and fusion in recommender systems[C]//Proceedings of the 2011 ACM Conference on Recommender Systems, Chicago, Oct 23-27, 2011. New York: ACM, 2011: 387-388.
[55] HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): 19.
[56] WU F Z, QIAO Y, CHEN J H, et al. Mind: a large-scale dataset for news recommendation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 3597-3606.
[57] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International World Wide Web Conference, Hong Kong, China, May 1-5, 2001. New York: ACM, 2001: 285-295.
[58] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv:1205.2618, 2012.
[59] RENDLE S. Factorization machines with libFM[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3(3): 1-22.
[60] HUANG P S, HE X D, GAO J F, et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, Oct 27-Nov 1, 2013. New York: ACM, 2013: 2333-2338.
[61] ZHENG G J, ZHANG F Z, ZHENG Z H, et al. DRN: a deep reinforcement learning framework for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 167-176.
[62] CHENG H, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, Sep 15, 2016. New York: ACM, 2016: 7-10.
[63] GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction[J]. arXiv:1703.04247, 2017.
[64] KUMAR V, KHATTAR D, GUPTA S, et al. Deep neural architecture for news recommendation[C]//Proceedings of the Conference and Labs of the Evaluation Forum, Dublin, Sep 11-14, 2017: 1-19.
[65] QUADRANA M, KARATZOGLOU A, HIDASI B, et al. Personalizing session-based recommendations with hierarchical recurrent neural networks[C]//Proceedings of the 11th ACM Conference on Recommender Systems, Como, Aug 27-31, 2017. New York: ACM, 2017: 130-137.
[66] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 173-182.
[67] ZHU Y X, Lv L Y. Evaluation metrics for recommender systems[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 163-175.
朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2): 163-175.
[68] HANLEY J A, MCNEIL B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 1982, 143(1): 29-36.
[69] MENG X W, CHEN C, ZHANG Y J. A survey of mobile news recommend techniques and applications[J]. Chinese Journal of Computers, 2016, 39(4): 685-703.
孟祥武, 陈诚, 张玉洁. 移动新闻推荐技术及其应用研究综述[J]. 计算机学报, 2016, 39(4): 685-703.
[70] QIN X P. Causes and countermeasures of false news: taking the top ten fake news in 2017 as an example[J]. New Media Research, 2018, 4(13): 19-20.
秦希屏. 虚假新闻的成因及其应对策略——以2017年十大假新闻为例[J]. 新媒体研究, 2018, 4(13): 19-20.
[71] RUCHANSKY N, SEO S, LIU Y. CSI: a hybrid deep model for fake news detection[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 797-806.
[72] ZHANG J, CUI L, FU Y, et al. Fake news detection with deep diffusive network model[J]. arXiv:1805.08751, 2018.
[73] LU H Y, ZHANG M, MA W Z, et al. Quality effects on user preferences and behaviors in mobile news streaming [C]//Proceedings of the 28th International World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 1187-1197.
[74] ZHANG H G, HAN W B, LAI X J, et al. A survey on cyberspace security[J]. Scientia Sinica (Informationis), 2016, 46(2): 125-164.
张焕国, 韩文报, 来学嘉, 等. 网络空间安全综述[J]. 中国科学: 信息科学, 2016, 46(2): 125-164.
[75] ZHANG Y, CHEN X. Explainable recommendation: a survey and new perspectives[J]. arXiv:1804.11192, 2018.
[76] LU Y C, DONG R H, SMYTH B. Coevolutionary recommendation model: mutual learning between ratings and reviews[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 773-782.
[77] WANG H W, ZHANG F Z, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. |