[1] YU H, WANG X, WANG G, et al. An active three-way clus-tering method via low-rank matrices for multi-view data[J]. Information Sciences, 2020, 507: 823-839.
[2] WANG Y, LIN X, WU L, et al. Robust subspace clustering for multi-view data by exploiting correlation consensus[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3939-3949.
[3] HAN Y, WU F, TAO D, et al. Sparse unsupervised dimensio-nality reduction for multiple view data[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(10): 1485-1496.
[4] XU J, HAN J, NIE F, et al. Re-weighted discriminatively emb-edded k-means for multi-view clustering[J]. IEEE Transactions on Image Processing, 2017, 26(6): 3016-3027.
[5] TANG C, ZHU X, LIU X, et al. Learning a joint affinity graph for multiview subspace clustering[J]. IEEE Transactions on Multimedia, 2018, 21(7): 1724-1736.
[6] PEDRYCZ W. Collaborative fuzzy clustering[J]. Pattern Recog-nition Letters, 2002, 23(14): 1675-1686.
[7] YAMANISHI Y, VERT J P, KANEHISA M. Protein network inference from multiple genomic data: a supervised approach[J]. Bioinformatics, 2004, 20(S1): 363-370.
[8] LU C, YAN S, LIN Z. Convex sparse spectral clustering: single-view to multi-view[J]. IEEE Transactions on Image Process-ing, 2016, 25(6): 2833-2843.
[9] CHEN X, XU X, HUANG J Z, et al. TW-k-means: auto-mated two-level variable weighting clustering algorithm for multiview data[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4): 932-944.
[10] LIU J, WANG C W, GAO J L, et al. Multi-view clustering via joint nonnegative matrix factorization[C]//Proceedings of the 13th SIAM International Conference on Data Mining, Austin, May 2-4, 2013. Philadelphia: SIAM, 2013: 252-260.
[11] CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 586-594.
[12] DENG Z H, CHOI K S, JIANG Y, et al. A survey on soft subspace clustering[J]. Information Sciences, 2016, 348: 84-106.
[13] DENG Z H, LIU R X, ZHANG T, et al. Multi-view clustering with the cooperation of visible and hidden views[J]. IEEE Transactions on Knowledge and Data Engineering, 2020: 1.
[14] DING C H Q, LI T, JORDAN M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(1): 45-55.
[15] DIETERICH T G. Ensemble methods in machine learning [C]//LNCS 1857: Proceedings of the 1st International Workshop on Multiple Classifier Systems, Italy, Jun 21-23, 2000. Berlin, Heidelberg: Springer, 2000: 1-15.
[16] LIU Y, YAO X. Ensemble learning via negative correlation[J]. Neural Networks, 1999, 12(10): 1399-1404.
[17] MITRA S, BANKA H, PEDRYCZ W. Rough-fuzzy collaborative clustering[J]. IEEE Transactions on Cybernetics, 2006, 36(4): 795-805.
[18] PEDRYCZ W, RAI P. Collaborative clustering with the use of fuzzy C-means and its quantification[J]. Fuzzy Sets and Systems, 2008, 159(18): 2399-2427.
[19] FORESTIER G, GAN?ARSKI P, WEMMERT C. Collaborative clustering with background knowledge[J]. Data & Knowledge Engineering, 2010, 69(2): 211-228.
[20] GAO H C, NIE F P, LI X L, et al. Multi-view subspace clus-tering[C]//Proceedings of the 2015 IEEE International Con-ference on Computer Vision, Santiago, Dec 7-13, 2015. Wash-ington: IEEE Computer Society, 2015: 4238-4246.
[21] ZHANG C Q, HU Q H, FU H Z, et al. Latent multi-view subspace clustering[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4279-4287.
[22] FAN Y, LIANG J, HE R, et al. Robust localized multi-view subspace clustering[J]. arXiv:1705.07777, 2017.
[23] NANDY M, BANERJEE M. A comparative analysis of application of niblack and sauvola binarization to retinal vessel segmentation[C]//Proceedings of the 3rd International Conference on Computational Intelligence and Networks, Odisha, Oct 28, 2017. Washington: IEEE Computer Society, 2017: 105-109.
[24] ZENG S, WANG X, CUI H, et al. A unified collaborative multikernel fuzzy clustering for multiview data[J]. IEEE Transactions on Fuzzy Systems, 2017, 26(3): 1671-1687.
[25] GUO P, XIE G, LI R. Object detection using multiview CCA-based graph spectral learning[J]. Journal of Circuits, Systems and Computers, 2020, 29(2): 2050022.
[26] LIN T, MA S, ZHANG S. On the global linear convergence of the ADMM with multiblock variables[J]. SIAM Journal on Optimization, 2015, 25(3): 1478-1497.
[27] SEUNG D, LEE L. Algorithms for non-negative matrix fac-torization[J]. Advances in Neural Information Processing Systems, 2001, 13: 556-562.
[28] ZHANG X, ZHANG X, LIU H, et al. Multi-task multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3324-3338.
[29] GUO G B, ZHANG J, YORKE-SMITH N. Leveraging multi-views of trust and similarity to enhance clustering-based recommender systems[J]. Knowledge-Based Systems, 2015, 74: 14-27.
[30] ZHAO L, CHEN Z, YANG Y, et al. Incomplete multi-view clustering via deep semantic mapping[J]. Neurocomputing, 2018, 275: 1053-1062.
[31] WANG S T, CHUNG K F L, DENG Z H, et al. Robust maxi-mum entropy clustering algorithm with its labeling for outliers[J]. Soft Computing, 2006, 10(7): 555-563.
[32] GU Q, ZHOU J. Co-clustering on manifolds[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 359-368.
[33] HOUTHUYS L, LANGONE R, SUYKENS J A K. Multi-view kernel spectral clustering[J]. Information Fusion, 2018, 44: 46-56. |