[1] LUO Y, XIA H B, LIU Y. Collaborative filtering based on attention LSTM[J]. Journal of Chinese Information Processing, 2019, 33(12): 110-118.
罗洋, 夏鸿斌, 刘渊. 融合注意力LSTM的协同过滤推荐算法[J]. 中文信息学报, 2019, 33(12): 110-118.
[2] HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.
黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
[3] MOONEY R J, ROY L. Content-based book recommend-ing using learning for text categorization[C]//Proceedings of the 5th ACM Conference on Digital Libraries, San Antonio, Jun 2-7, 2000. New York: ACM, 2000: 195-204.
[4] GOLDBERG D, NICHOLS D, OKI B M, et al. Using colla-borative filtering to weave an information tapestry[J]. Commu-nications of the ACM, 1992, 35(12): 61-70.
[5] MARKO B, YOAV S. Fab: content-based, collaborative reco-mmendation[J]. Communications of the ACM, 1997, 40(3): 66-72.
[6] ZHANG S, YAO L, SUN A, et al. Deep learning based recom-mender system: a survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38.
[7] CHEN X, XU H, ZHANG Y, et al. Sequential recommenda-tion with user memory networks[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York: ACM, 2018: 108-116.
[8] HAN J Y, ZHENG L H, HUANG H, et al. Deep latent factor model with hierarchical similarity measure for recommender systems[J]. Information Sciences: An International Journal, 2019, 503: 521-532.
[9] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[10] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, Sep 15, 2016. New York: ACM, 2016: 7-10.
[11] LI Y, LIU T, JIANG J, et al. Hashtag recommendation with topical attention-based LSTM[C]//Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 3019-3029.
[12] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks [C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016: 1-9.
[13] BANSAL T, BELANGER D, MCCALLUM A. Ask the GRU: multi-task learning for deep text recommendations[C]//Pro-ceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 107-114.
[14] WANG X, WANG D X, XU C R, et al. Explainable rea-soning over knowledge graphs for recommendation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Edu-cational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5329-5336.
[15] SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]//Procee-dings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2-7, 2018. New York: ACM, 2018: 297-305.
[16] ZHAO H, YAO Q M, LI J D, et al. Meta-graph based recom-mendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 635-644.
[17] WANG Q, MAO Z, WANG B, et al. Knowledge graph embe-dding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge & Data Engineering, 2017, 29(12): 2724-2743.
[18] BORDES A, USUNIER N, GARCíA-DURáN A, et al. Trans-lating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795.
[19] LUO A G, GAO S, XU Y J. Deep semantic match model for entity linking using knowledge graph and text[C]//Pro-ceedings of the 2017 International Conference on Identi-fication, Information and Knowledge in the Internet of Things, Shandong, Oct 19-21, 2017. New York: Elsevier Science Inc., 2017: 110-114.
[20] WANG H W, ZHANG F Z, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844.
[21] WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: pro-pagating user preferences on the knowledge graph for reco-mmender systems[C]//Proceedings of the 27th ACM Interna-tional Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426.
[22] WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation [C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2000-2010.
[23] KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining, Las Vegas, Aug 24-27, 2008. New York: ACM, 2008: 426-434.
[24] GOIN J E. Classification bias of the k-nearest neighbor algo-rithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(3): 379-381.
[25] WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regula-rization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 968-977.
[26] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Procee-dings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313. |