[1] WU Y Y, NGAI E W T, WU P K, et al. Fake online reviews: literature review, synthesis, and directions for future research[J]. Decision Support Systems, 2020, 132: 113280.
[2] YUAN L, LI D, WEI S K, et al. Research of deceptive review detection based on target product identification and metapath feature weight calculation[J]. Complexity, 2018: 1-12.
[3] 周黎宇. 基于非均衡数据分类方法的虚假评论检测研究[D]. 合肥: 合肥工业大学, 2018.
ZHOU L Y. Research on review spam detection based on imbalanced data classification method[D]. Hefei: Hefei University of Technology, 2018.
[4] NAJADA H A, ZHU X Q. iSRD: spam review detection with imbalanced data distributions[C]//Proceedings of the 15th International Conference on Information Reuse and Integration, Redwood City, Aug 13-15, 2014. Washington:IEEE Computer Society, 2014: 553-560.
[5] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[6] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-13.
[7] VASANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[8] ZHANG Y M, FAN Y J, YE Y F, et al. Key player identification in underground forums over attributed heterogeneous information network embedding framework[C]//Proceedings of the 28th International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 549-558.
[9] WANG J Y, WEN R, WU C M, et al. FdGars: fraudster detection via graph convolutional networks in online App review system[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 310-316.
[10] JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1): 27.
[11] REN Y F, JI D H. Learning to detect deceptive opinion spam: a survey[J]. IEEE Access, 2019, 7: 42934-42945.
[12] SHOJAEE S, MURAD M A A, AZMAN A B, et al. Detecting deceptive reviews using lexical and syntactic features[C]//Proceedings of the 13th International Conference on Intellient Systems Design and Applications, Salangor, Dec 8-10, 2013. Piscataway: IEEE, 2013: 53-58.
[13] 任亚峰, 尹兰, 姬东鸿. 基于语言结构和情感极性的虚假评论识别[J]. 计算机科学与探索, 2014, 8(3): 313-320.
REN Y F, YIN L, JI D H. Deceptive reviews detection based on language structure and sentiment polarity[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(3): 313-320.
[14] 王梦华. 基于半监督学习的虚假评论识别研究[D]. 南京: 南京财经大学, 2018.
WANG M H. Research on fake reviews based on semi-supervised learning[D]. Nanjing: Nanjing University of Finance & Economics, 2018.
[15] XU Y Q, SHI B, TIAN W T, et al. A unified model for unsupervised opinion spamming detection incorporating text generality[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 725-732.
[16] SHEHNEPOOR S, SALEHI M, FARAHBAKHSH R, et al. NetSpam: a network-based spam detection framework for reviews in online social media[J]. IEEE Transactions on Information Forensics & Security, 2017, 12(7): 1585-1595.
[17] LI B T, PI D C. Network representation learning: a systematic literature review[J]. Neural Computing and Applications, 2020, 32(21): 16647-16679.
[18] XU G X, HU M X, MA C, et al. GSCPM: CPM-based group spamming detection in online product reviews[C]// Proceedings of the 2019 International Conference on Comm-unications, Shanghai, May 20-24, 2019. Piscataway: IEEE, 2019: 1-6.
[19] AKOGLU L, CHANDY R, FALOUTSOS C. Opinion fraud detection in online reviews by network effects[C]//Proceedings of the 7th International Conference on Weblogs and Social Media, Cambridge, Jul 8-11, 2013. Menlo Park: AAAI, 2013: 2-11.
[20] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th Inter-national Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-12.
[21] 李璐旸, 秦兵, 刘挺. 虚假评论检测研究综述[J]. 计算机学报, 2018, 41(4): 946-968.
LI L Y, QIN B, LIU T. Survey on fake review detection research[J]. Chinese Journal of Computers, 2018, 41(4): 946-968.
[22] SINGH A, PUROHIT A. A survey on methods for solving data imbalance problem for classification[J]. International Journal of Computer Applications, 2015, 127(15): 37-41.
[23] ZHOU Z H.?Ensemble methods: foundations and algorithms[M]. Boca Raton: CRC Press, 2012.
[24] LEE Y S. Ensemble classification method for imbalanced data using deep learning[C]//Proceedings of the 17th Workshop on e-Business, Santa Clara, Dec 12, 2018. Cham: Springer, 2018: 162-170.
[25] RAYANA S, AKOGLU L. Collective opinion spam detection: bridging review networks and metadata[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Aug 10-13, 2015. New York: ACM, 2015: 985-994.
[26] MCAULEY J J, LESKOVEC J. From amateurs to conn-oisseurs: modeling the evolution of user expertise through online reviews[C]//Proceedings of the 22nd International World Wide Web Conference, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 897-908.
[27] ZHANG S J, YIN H Z, CHEN T, et al. GCN-based user representation learning for unifying robust recommendation and fraudster detection[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 689-698.
[28] DOU Y T, LIU Z W, SUN L, et al. Enhancing graph neural network-based fraud detectors against camouflaged fraudsters[C]//Proceedings of the 29th International Conference on Information and Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 315-324.
[29] LIU Z W, DOU Y T, YU P S, et al. Alleviating the inconsistency problem of applying graph neural network to fraud detection[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and development in Information Retrieval. New York: ACM, 2020: 1569-1572.
[30] HAMILTON W L, YING Z T, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1024-1034.
赵敏(1997—),女,陕西渭南人,硕士研究生,主要研究方向为深度学习、异常检测。
ZHAO Min, born in 1997, M.S. candidate. Her research interests include deep learning and anomaly detection. |