[1] |
GARTNER. Gartner says worldwide sales of smartphones grew 9 percent in first quarter of 2017[EB/OL]. [2021-01-12]. .
|
[2] |
WANG W, LI Y, WANG X, et al. Detecting android malicious apps and categorizing benign apps with ensemble of classifiers[J]. Future Generation Computer Systems, 2018, 78: 987-994.
|
[3] |
WANG X, WANG W, HE Y, et al. Characterizing Android apps’ behavior for effective detection of malapps at large scale[J]. Future Generation Computer Systems, 2017, 75: 30-45.
|
[4] |
SARACINO A, SGANDURRA D, DINI G, et al. MADAM: effective and efficient behavior-based Android malware detection and prevention[J]. IEEE Transactions on Dependable & Secure Computing, 2018, 15(1): 83-97.
|
[5] |
BADHANI S, MUTTOO S. CENDROID—a cluster-ensemble classifier for detecting malicious Android applications[J]. Computers & Security, 2019, 85: 25-40.
|
[6] |
WANG W, WANG X, FENG D, et al. Exploring permission-induced risk in Android applications for malicious application detection[J]. IEEE Transactions on Information Forensics & Security, 2017, 9(11): 1869-1882.
|
[7] |
SCALAS M, MAIORCA D, MERCALDO F, et al. On the effectiveness of system API-related information for Android ransomware detection[J]. Computers & Security, 2019, 86.
|
[8] |
FAN M, LUO X, LIU J, et al. CTDroid: leveraging a corpus of technical blogs for Android malware analysis[J]. IEEE Transactions on Reliability, 2020, 69(1): 124-138.
|
[9] |
XU K, LI Y, DENG R. ICCDetector: ICC-based malware detection on Android[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1252-1264.
|
[10] |
陈铁明, 杨益敏, 陈波. Maldetect:基于Dalvik指令抽象的Android恶意代码检测系统[J]. 计算机研究与发展, 2016, 53(10): 2298-2305.
|
|
CHEN T M, YANG Y M, CHEN B. Maldetect: an Android malware detection system based on abstraction of Dalvik instructions[J]. Journal of Computer Research and Development, 2016, 53(10): 2298-2305.
|
[11] |
LEI T, QIN Z, WANG Z, et al. EveDroid: event-aware Android malware detection against model degrading for IoT devices[J]. IEEE Internet of Things Journal, 2019, 6(4): 6668-6680.
|
[12] |
陈铁明, 徐志威. 基于API调用序列的Android恶意代码检测方法研究[J]. 浙江工业大学学报, 2018, 46(2): 147-154.
|
|
CHEN T M, XU Z W. Research on detection of Android malicious code based on API call sequence[J]. Journal of Zhejiang University of Technology, 2018, 46(2): 147-154.
|
[13] |
ONWUZURIKE L, MARICONTI E, ANDRIOTIS P, et al. MaMaDroid: detecting Android malware by building Markov chains of behavioral models (extended version)[J]. ACM Transactions on Privacy & Security, 2019, 22(2): 14.
|
[14] |
ZHANG H, LUO S, ZAHNG Y, et al. An efficient Android malware detection system based on method-level behavioral semantic analysis[J]. IEEE Access, 2019, 7: 69246-69256.
|
[15] |
ZHU J W, WU Z G, GUAN Z, et al. API sequences based malware detection for Android[C]// Proceedings of the 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Com-munications and Its Associated Workshops, Beijing, Aug 10-14, 2015. Washington: IEEE Computer Society, 2015: 673-676.
|
[16] |
AU K W Y, ZHOU Y F, HUANG Z, et al. PScout: analyzing the Android permission specification[C]// Proceedings of the 2012 ACM Conference on Computer and Communications Security, Raleigh, Oct 16-18, 2012. New York: ACM, 2012: 217-228.
|
[17] |
ARZT S, RASTHOFER S, FRITZ C, et al. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android Apps[C]// Proceedings of the 2014 ACM SIGPLAN Conference on Programming Language Design and Implementation, Edinburgh, Jun 9-11, 2014. New York: ACM, 2014: 259-269.
|
[18] |
刘星, 唐勇. 恶意代码的函数调用图相似性分析[J]. 计算机工程与科学, 2014, 36(3): 481-486.
|
|
LIU X, TANG Y. Similarity analysis of malware’s function-call graphs[J]. Computer Engineering & Science, 2014, 36(3): 481-486.
|
[19] |
FAN M, LIU J, WANG W, et al. DAPASA: detecting An- droid piggybacked APPs through sensitive subgraph analysis[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(8): 1772-1785.
|
[20] |
AGRAWAL R, SRIKANT R. Mining sequential patterns[C]// Proceedings of the 11th International Conference on Data Engineering, Taipei, China, Mar 6, 1995. New York:ACM, 2015: 3-14.
|
[21] |
张家旺, 李燕伟. 基于N-gram算法的恶意程序检测系统研究与设计[J]. 信息网络安全, 2016(8): 74-80.
|
|
ZHANG J W, LI Y W. Research and design on malware detection system based on N-gram algorithm[J]. Netinfo Security, 2016(8): 74-80.
|