[1] XIAO L, CHEN B L, HUANG X, et al. Multi-label text classification method based on label semantic information[J]. Journal of Software, 2020, 31(4): 1079-1089.
肖琳, 陈博理, 黄鑫, 等. 基于标签语义注意力的多标签文本分类[J]. 软件学报, 2020, 31(4): 1079-1089.
[2] ZENG Y F, MU Q L, ZHOU L, et al. Graph embedding based session perception model for next-click recommendation[J]. Journal of Computer Research and Development, 2020, 57(3): 590-603.
曾义夫, 牟其林, 周乐, 等. 基于图表示学习的会话感知推荐模型[J]. 计算机研究与发展, 2020, 57(3): 590-603.
[3] HUANG W, CHEN E H, LIU Q, et al. Hierarchical multi-label text classification: an attention-based recurrent network approach[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1051-1060.
[4] MA J X, CUI P, WANG X, et al. Hierarchical taxonomy aware network embedding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1920-1929.
[5] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 2014 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[6] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864.
[7] TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 1067-1077.
[8] QIU J Z, DONG Y X, MA H, et al. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York: ACM, 2018: 459-467.
[9] LI Y, WANG Y, ZHANG T T, et al. Learning network embedding with community structural information[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 2937- 2943.
[10] MIKOLOV T, SUTSKEVERI, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 3111-3119.
[11] YANG C, LIU Z Y, ZHAO D L, et al. Network representation learning with rich text information[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 2111-2117.
[12] ZHANG Z, YANG H X, BU J J, et al. ANRL: attributed network representation learning via deep neural networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3155-3161.
[13] LIU J, HE Z C, WEI L, et al. Content to node: self-translation network embedding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1794-1802.
[14] MENG Z Q, LIANG S S, BAO H Y, et al. Co-embedding attributed networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 393-401.
[15] GAO H C, HUANG H. Deep attributed network embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3364-3370.
[16] DONG Y Q, WANG X, LIU Y B, et al. Building network domain knowledge graph from heterogeneous YANG models[J]. Journal of Computer Research and Development, 2020, 57(4): 699-708.
董永强, 王鑫, 刘永博, 等. 异构YANG模型驱动的网络领域知识图谱构建[J]. 计算机研究与发展, 2020, 57(4): 699-708.
[17] SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357-370.
[18] CEN Y K, ZOU X, ZHANG J W, et al. Representation lear-ning for attributed multiplex heterogeneous network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1358-1368.
[19] PAN S R, WU J, ZHU X Q, et al. Tri-party deep network representation[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 1895-1901.
[20] HUANG X, LI J D, HU X. Label informed attributed network embedding[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, Feb 6-10, 2017. New York: ACM, 2017: 731-739.
[21] KIPFAND T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-14.
[22] HAMILTON W L, YING Z T, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1024-1034.
[23] HU F Y, ZHU Y Q, WU S, et al. Hierarchical graph convolutional networks for semi-supervised node classification[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4532-4539.
[24] XU B B, SHEN H W, CAO Q, et al. Graph wavelet neural network[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019: 1-13.
[25] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93-106.
[26] GRADY L. Random walks for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768-1783. |