[1] YUN X Y. Research on traveling salesman problem algorithm[J]. Advanced Materials Research, 2013, 694-697: 2901-2904.
[2] GUPTA A, KHURANA S. Study of traveling salesman pro-blem using genetic algorithm[J]. International Journal of Managment, IT and Engineering, 2012, 2(5): 575-588.
[3] SHIRDEL G H, ABDOLHOSSEINZADEH M. A simulated annealing heuristic for the online symmetric traveling sales-man problem[J]. Journal of Information and Optimization Sciences, 2018, 39(6): 1283-1296.
[4] WANG Y, XU N. A hybrid particle swarm optimization me-thod for traveling salesman problem[J]. International Journal of Applied Metaheuristic Computing, 2017, 8(3): 53-65.
[5] MAVROVOUNIOTIS M, MULLER F M, YANG S X. Ant colony optimization with local search for dynamic traveling salesman problems[J]. IEEE Transactions on Cybernetics, 2016, 47(7): 1743-1756.
[6] DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1): 29-41.
[7] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computa-tion, 1997, 1(1): 53-66.
[8] STUTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems, 2000, 16(8): 889-914.
[9] DA FONSECA L G, CAPRILES P V S Z, BARBC H J C, et al. A stochastic rank-based ant system for discrete stru-ctural optimization[C]//Proceedings of the 2007 IEEE Swarm Intelligence Symposium, Honolulu, Apr 1-5, 2007. Piscata-way: IEEE, 2007: 68-75.
[10] ZHANG S C, PU J X, SI Y N, et al. Survey on application of ant colony algorithm in path planning of mobile robot[J]. Computer Engineering and Applications, 2020, 56(8): 10-19.
张松灿, 普杰信, 司彦娜, 等. 蚁群算法在移动机器人路径规划中的应用综述[J]. 计算机工程与应用, 2020, 56(8): 10-19.
[11] LIU X Y, TAN L M, YANG C X, et al. Self-adjustable dynamic path planning of unknown environment based on ant colony-clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 846-857.
刘新宇, 谭力铭, 杨春曦, 等. 未知环境下的蚁群-聚类自适应动态路径规划[J]. 计算机科学与探索, 2019, 13(5): 846-857.
[12] HU C Y, JIANG P, ZHOU G R. Application of improved ant colony algorithm in AGV path planning[J]. Computer Engineering and Applications, 2020, 56(8): 270-278.
胡春阳, 姜平, 周根荣. 改进蚁群算法在AGV路径规划中的应用[J]. 计算机工程与应用, 2020, 56(8): 270-278.
[13] JIANG H N, ZHANG X F. A hybrid artificial fish swarm and shuffled frog leaping algorithm[J]. Journal of Shanghai Dianji University, 2019, 22(6): 330-336.
姜慧楠, 张向锋. 一种人工鱼群-蛙跳混合优化算法[J]. 上海电机学院学报, 2019, 22(6): 330-336.
[14] WEI S W. A new co-evolution based genetic algorithm designed for TSP problem[J]. Intelligent Computer and App-lications, 2019, 9(5): 25-29.
魏士伟. 一种求解TSP问题的协同进化算法[J]. 智能计算机与应用, 2019, 9(5): 25-29.
[15] ZHOU N, GE H W, YUAN Y H, et al. Artificial bee colony based ant colony optimization for continuous domains[J]. Computer Engineering & Science, 2016, 38(6): 1156-1163.
周袅, 葛洪伟, 袁运浩, 等. 基于人工蜂群的连续域蚁群优化算法[J]. 计算机工程与科学, 2016, 38(6): 1156-1163.
[16] TAO L H, MA Z N, SHI P T, et al. Dynamic ant colony genetic algorithm based on TSP[J]. Machinery Design & Manufacture, 2019(12): 147-149.
陶丽华, 马振楠, 史朋涛, 等. 基于TSP问题的动态蚁群遗传算法[J]. 机械设计与制造, 2019(12): 147-149.
[17] XU J. Improvement research and application of ant colony algorithm and leapfrog algorithm[D]. Huainan: Anhui Univer-sity of Science and Technology, 2019.
许健. 蚁群算法和蛙跳算法的改进研究及其应用[D]. 淮南: 安徽理工大学, 2019.
[18] ZHANG P, XUE H Q, YUAN X W. Adaptive heterogeneous multiple ant colonies algorithm based on similarity[J]. Com-puter Engineering and Applications, 2014, 50(19): 37-41.
张鹏, 薛宏全, 原欣伟. 基于相似度的自适应异类多种群蚁群算法[J]. 计算机工程与应用, 2014, 50(19): 37-41.
[19] ZHANG D H, YOU X M, LIU S. Dynamic grouping ant colony algorithm combined with cat swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 880-891.
张德惠, 游晓明, 刘升. 融合猫群算法的动态分组蚁群算法[J]. 计算机科学与探索, 2020, 14(5): 880-891.
[20] QIAO D P, PEI J, LI H, et al. Research on improving ant colony algorithm to solve TSP problem[J]. Machinery Design & Manufacture, 2019(10): 144-149.
乔东平, 裴杰, 李浩, 等. 改进蚁群算法求解TSP问题研究[J]. 机械设计与制造, 2019(10): 144-149.
[21] QIAO S, LYU Z M, ZHANG N. Improved particle swarm optimization algorithm based on Hamming distance for trave-ling salesman problem[J]. Journal of Computer Applications, 2017, 37(10): 2767-2772.
乔屾, 吕志民, 张楠. 基于汉明距离的改进粒子群算法求解旅行商问题[J]. 计算机应用, 2017, 37(10): 2767-2772.
[22] WANG Z, LIU R M, ZHU Y G, et al. Improved genetic algorithm for solving TSP problem[J]. Electronic Measure-ment Technology, 2019, 42(23): 91-96.
王震, 刘瑞敏, 朱阳光, 等. 一种求解TSP问题的改进遗传算法[J]. 电子测量技术, 2019, 42(23): 91-96. |