[1] BALAS E, ZEMEL E. An algorithm for large zero-one knapsack problems[J]. Operations Research, 1980, 28(5): 1130-1154.
[2] PISINGER D. Core problems in knapsack algorithms[J]. Operations Research, 1999, 47(4): 570-575.
[3] GUDER J. Discounted knapsack problems for pairs of items[D]. Nuremberg: University of Erlangen-Nurnberg, 2005.
[4] GULDAN B. Heuristic and exact algorithms for discounted knapsack problems[D]. Nuremberg: University of Erlangen-Nuremberg, 2007.
[5] RONG A, FIGUEIRA J R, KLAMROTH K. Dynamic pro-gramming based algorithms for the discounted {0-1} knapsack problem[J]. Applied Mathematics & Computation, 2012, 218(12): 6921-6933.
[6] HE Y C, WANG X Z, HE Y L, et al. Exact and approximate algorithms for discounted {0-1} knapsack problem[J]. Information Sciences, 2016, 369: 634-647.
[7] 贺毅朝, 王熙照, 李文斌, 等. 基于遗传算法求解折扣{0-1}背包问题的研究[J]. 计算机学报, 2016, 39(12): 2614-2630.
HE Y C, WANG X Z, LI W B, et al. Research on genetic algorithms for discounted {0-1} knapsack problem[J]. Chinese Journal of Computers, 2016, 39(12): 2614-2630.
[8] 杨洋, 潘大志, 贺毅朝. 核加速遗传算法求解折扣{0-1}背包问题[J]. 西华师范大学学报(自然科学版), 2018, 39(2):165-172.
YANG Y, PAN D Z, HE Y C. Core accelerated genetic algorithm to solve the discount {0-1} knapsack problem[J]. Journal of China West Normal University (Natural Sciences Edition), 2018, 39(2): 165-172.
[9] 徐小平, 徐丽, 王峰, 等. 基于Lagrange插值的学习猴群算法求解折扣{0-1}背包问题[J]. 计算机应用, 2020, 40(11): 19-24.
XU X P, XU L, WANG F, et al. Learning monkey algorithm based on Lagrange interpolation to solve discounted {0-1}knapsack problem[J]. Journal of Computer Applications, 2020, 40(11): 19-24.
[10] WU C C, ZHAO J L, FENG Y H, et al. Solving discounted {0-1} knapsack problems by a discrete hybrid teaching-learning-based optimization algorithm[J]. Applied Intelligence, 2020, 50(12): 1872-1888.
[11] 史文旭, 杨洋, 鲍胜利. 贪心核加速动态规划算法求解折扣{0-1}背包问题[J]. 计算机应用, 2019, 39(7): 1912-1917.
SHI W X, YANG Y, BAO S L. Greedy core acceleration dynamic programming algorithm for solving discounted{0-1}knapsack problem[J]. Journal of Computer Applications, 2019, 39(7): 1912-1917.
[12] HE Y C, WANG X Z, GAO S G. Ring theory-based evolutionary algorithm and its application to D{0-1}KP[J]. Applied Soft Computing, 2019, 77: 714-722.
[13] PISINGER D. An expanding core algorithm for the exact 0-1 knapsack problem[J]. European Journal of Operational Research, 1995, 87(1): 175-187.
[14] BEIER R, V?CKING B. Probabilistic analysis of knapsack core algorithms[C]//Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Jan 11-14, 2004. Philadelphia: SIAM, 2004: 468-477.
[15] GOMESDASILVA C, CLIMACO J, RUIFIGUEIRA J. Core problems in bi-criteria {0-1}-knapsack problems[J]. Computers & Operations Research, 2008, 35: 2292-2306.
[16] FUJIMOTO N. A pseudo-polynomial time algorithm for solving the knapsack problem in polynomial space[C]//LNCS 10043: Proceedings of the 10th International Conference, Hong Kong, China, Dec 16-18, 2016. Cham: Springer, 2016:624-638. |