[1] RAMSAY J O, SILVERMAN B W. Functional data analysis[M]. New York:
Springer, 2005.
[2] BOUVEYRON C, BRUNET S C. Model-based clustering of
high-dimensional data: a review[J]. Computational Statistics & Data
Analysis, 2014, 71(1): 52-78.
[3] SHAO J J, WANG S T. Incremental clustering
algorithm with anti-noise performance and suitable for high dimensional data[J].
Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1553-1566.
邵俊健, 王士同. 具有抗噪性能适用高维数据的增量式聚类算法[J]. 计算机科学与探索, 2019, 13(9): 1553-1566.
[4]
JAMES G M, SUGAR C A. Clustering for sparsely sampled functional data[J].
Journal of the American Statistical Asso-ciation, 2003, 98(462): 397-408.
[5] IEVA F, PAGANONI A M, PIGOLI D, et al. Multivariate functional
clustering for the morphological analysis of ele-ctrocardiograph curves[J].
Journal of the Royal Statistical Society, 2013, 62(3): 401-418.
[6] HUANG H
J. Curves clustering using B-splines expansion[J]. Statistics & Information
Forum, 2013, 28(9): 3-8.
黄恒君. 基于B-样条基底展开的曲线聚类方法[J]. 统计与信息论坛, 2013, 28(9):
3-8.
[7] JACQUES J, PREDA C. Model-based clustering for multi-variate
functional data[J]. Computational Statistics & Data Analysis, 2014, 71(3):
92-106.
[8] JACQUES J, PREDA C. Funclust: a curves clustering method using
functional random variables density approximation[J]. Neurocomputing, 2013,
112(18): 164-171.
[9] KAYANO M, DOZONO K, KONISHI S. Functional cluster
analysis via orthonormalized Gaussian basis expansions and its application[J].
Journal of Classification, 2010, 27(2): 211-230.
[10] HUANG H J, GAO H Y,
ZHANG M Y. Functional clu-stering analysis: a distance-based one-step
framework[J]. Journal of Applied Statistics and Management, 2019, 38(6):
986-995.
黄恒君, 高海燕, 张梦瑶. 函数型聚类分析: 基于距离的一步法框架[J]. 数理统计与管理, 2019, 38(6):
986-995.
[11] YAMAMOTO M, HWANG H. Dimension-reduced clustering of
functional data via subspace separation[J]. Journal of Cla-ssification, 2017,
34(2): 294-326.
[12] TRAORE O I, CRISTINI P, FAVRETTO C N, et al.
Clu-stering acoustic emission signals by mixing two stages di-mension reduction
and non-parametric approaches[J]. Com-putational Statistics, 2019, 34(2):
631-652.
[13] FANG K N, PU D, ZHANG Q Z, et al. Locally sparse functional
clustering with its application in the analysis of economic development
patterns[J]. Statistics & Information Forum, 2020, 35(10): 3-11.
方匡南,
蒲丹, 张庆昭, 等. 局部稀疏函数型聚类及其在经济增长模式分析中的应用[J]. 统计与信息论坛, 2020, 35(10): 3-11.
[14]
GAO H Y, HUANG H J, WANG Y C. Functional clustering algorithm based on
non-negative matrix factorization[J]. Sta-tistical Research, 2020, 37(8):
91-103.
高海燕, 黄恒君, 王宇辰. 基于非负矩阵分解的函数型聚类算法[J]. 统计研究, 2020, 37(8): 91-103.
[15] NIE F P, SHI S, LI X. Semi-supervised learning with auto-weighting
feature and adaptive graph[J]. IEEE Transactions on Knowledge and Data
Engineering, 2020, 32(6): 1167-1178.
[16] LIU H, YANG G, WU Z, et al.
Constrained concept facto-rization for image representation[J]. IEEE
Transactions on Cybernetics, 2014, 44(7): 1214-1224.
[17] LI H R, ZHANG L,
ZHAO P J, et al. Semi-supervised concept factorization algorithm with local
coordinate constraint[J]. Journal of Frontiers of Computer Science and
Technology, 2021, 15(2): 379-388.
李会荣, 张林, 赵鹏军, 等. 带有局部坐标约束的半监督概念分解算法[J].
计算机科学与探索, 2021, 15(2): 379-388.
[18] LIU H, WU Z, LI X, et al. Constrained
nonnegative matrix factorization for image representation[J]. IEEE Transactions
on Software Engineering and Machine Intelligence, 2012, 34(7): 1299-1311.
[19] CAI H, LIU B, XIAO Y, et al. Semi-supervised multi-view clustering
based on constrained nonnegative matrix facto-rization[J]. Knowledge-Based
Systems, 2019, 182: 1-14.
[20] CAI H, LIU B, XIAO Y, et al. Semi-supervised
multi-view clustering based on orthonormality-constrained nonnegative matrix
factorization[J]. Information Sciences, 2020, 536: 171-184.
[21] EUBANK R L.
Nonparametric regression and spline smoo-thing[M]. 2nd ed. New York: Marcel
Dekker, Inc., 1999: 291-303.
[22] ABRAHAM C, CORNILLON P A, MATZNER-L?BER E,
et al. Unsupervised curve clustering using B-splines[J]. Scan-dinavian Journal
of Statistics, 2003, 30(3): 581-595.
[23] YAMAMOTO M, TERADA Y. Functional
factorial k-means analysis[J]. Computational Statistics & Data Analysis,
2014, 79(4): 133-148.
[24] LEE D D, SEUNG H. Learning the parts of objects
by non-negative matrix factorization[J]. Nature, 1999, 401: 788-791.
[25]
LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[J]. Neural
Information Processing Systems, 2001, 13(6): 556-562.
[26] DING C, HE X,
SIMON H D. On the equivalence of non-negative matrix factorization and spectral
clustering[C]//Pro-ceedings of the SIAM International Conference on Data Mining.
Philadelphia: SIAM, 2005: 606-610.
[27] DING C, LI T, JORDAN M. Convex and
semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern
Ana-lysis and Machine Intelligence, 2010, 32(1): 45-55.
[28] HOYER P O.
Nonnegative matrix factorization with sparse-ness constraints[J]. Journal of
Machine Learning Research, 2004, 5(9): 1457-1469.
|