[1] STROUD J, ROSS D, SUN C, et al. D3D: distilled 3D networks for video action recognition[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 614-623.
[2] LI C, ZHONG Q Y, XIE D, et al. Collaborative spatiotemporal feature learning for video action recognition[C]//Proceeding of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7872-7881.
[3] YANG H, YUAN C F, LI B, et al. Asymmetric 3D convolutional neural networks for action recognition[J]. Pattern Recognition, 2019, 85: 1-12.
[4] PAUL S, ALI S, SHAH M. A 3-dimensional SIFT descriptor and its application to action recognition[C]//Proceedings of the 15th International Conference on Multimedia 2007, Augsburg, Sep 24-29, 2007. New York: ACM, 2007: 357-360.
[5] KL?SER A, MARSZALEK M, SCHMID C. A spatio-temporal descriptor based on 3D-gradients[C]//Proceedings of the British Machine Vision Conference 2008, Leeds, Sep 2008. Durham: BMVA, 2008: 1-10.
[6] LAPTEV I, MARSZALEK M, SCHMID C, et al. Learning realistic human actions from movies[C]//Proceeding of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 24-26, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[7] RAVANBAKHSH M, MOUSAVI H, RASTEGARI M, et al. Action recognition with image based CNN features[J].arXiv:1512.03980, 2015.
[8] LEV G, SADEH G, KLEIN B. RNN Fisher vectors for action recognition and image annotation[C]//LNCS 9910: Proceeding of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 833-850.
[9] ZHOU J, CUI G Q, ZHANG Z Y, et al. Graph neural networks:a review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[10] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[11] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recogntion[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 7444-7452.
[12] THAKKAR K, NARAYANAN P J. Part-based graph con-volutional network for action recognition[J]. arXiv:1809. 04983, 2018.
[13] ZHANG X K, XU C, TIAN X M, et al. Graph edge convolutional neural networks for skeleton-based action recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 3047-3060.
[14] CHENG K, ZHANG Y F, HE X Y, et al. Skeleton-based action recognition with shift graph convolutional network[C]//Proceeding of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 180-189.
[15] LIU Z Y, ZHANG H W, CHEN Z H, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 140-149.
[16] ZHANG X K, XU C, TAO D C. Context aware graph convolution for skeleton-based action recognition[C]//Pro-ceeding of the 2020 Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1432-14330.
[17] 马利, 郑诗雨, 牛斌. 应用区域关联自适应图卷积的动作识别方法[J]. 计算机科学与探索, 2022, 16(4): 898-908.
MA L, ZHENG S Y, NIU B. Action recognition method on regional association adaptive graph convolution[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 898-908.
[18] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceeding of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[20] 李龙. 融合注意力机制的人体骨骼点动作识别方法研究[D]. 成都: 成都理工大学, 2019.
LI L. Research on the action recognition method of human skeletal point by integrating attention mechanism[D].Chengdu: Chengdu University Technology, 2019.
[21] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceeding of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269.
[22] DOSOVITSKIY A, BEYER L, KOLSENIKOV A, et al. An image is worth [16×16] words: transformers for image recognition at scale[C]//Proceeding of the 9th International Conference on Learning Representations, Austria, May 3-7, 2021: 1-21.
[23] WOO S, PARK J, LEE J Y. CBAM: convolutional block attention module[C]//LNCS 11211: Proceeding of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[24] 刘芳, 乔建忠, 代钦, 等. 基于双流多关系GCNs的骨架动作识别方法[J]. 东北大学学报(自然科学版), 2021, 42(6): 768-774.
LIU F, QIAO J Z, DAI Q, et al. Skeleton-based action recognition method with two-stream multi-relational GCNs[J]. Journal of Northeastern University (Natural Science), 2021, 42(6): 768-774.
[25] SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+D: a large scale dataset for 3D human activity analysis[C]//Pro-ceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washing-ton: IEEE Computer Society, 2016: 1010-1019.
[26] MULLER M, RODER T, CLAUSEN M, et al. Documentation mocap database HDM05[R]. Computer Graphics Technical Reports, 2007: 2.
[27] SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceeding of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 12026-12035.
[28] LI M S, CHEN S H, CHEN X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]//Proceeding of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3595-3603.
[29] 王志华. 基于时空图卷积神经网络的人体动作识别[D]. 成都: 电子科技大学, 2020.
WANG Z H. Research on human action recognition based on spatio-temporal graph convolutional neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2020. |