[1] KAIRAM S R, WANG D J, LESKOVEC J. The life and death of online groups: predicting group growth and longevity[C]//Proceedings of the 5th ACM International Conference on Web Search and Data Mining, Seattle, Feb 8-12, 2012. New York: ACM, 2012: 673-682.
[2] WANG J, CHENG J. Truss decomposition in massive networks[J]. Proceedings of the VLDB Endowment, 2012, 5(9): 812-823.
[3] 张晓琳, 袁昊晨, 李卓麟, 等. 面向子图匹配的社会网络隐私保护方法[J]. 计算机科学与探索, 2019, 13(9): 1504-1515.
ZHANG X L, YUAN H C, LI Z L, et al. Subgraph matching oriented privacy preserving method for social network[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1504-1515.
[4] JENA B S, KHAN C, SUNDERRAMAN R. High performance frequent subgraph mining on transaction datasets: a survey and performance comparison[J]. Big Data Mining and Analytics, 2019, 2(3): 159-180.
[5] UGANDER J, BACKSTROM L, KLEINBERG J. Subgraph frequencies: mapping the empirical and extremal geography of large graph collections[C]//Proceedings of the 22nd Inter-national Conference on World Wide Web, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 1307-1318.
[6] LIU H, KESELJ V, BLOUIN C. Biological event extraction using subgraph matching[C]//Proceedings of the 4th Inter-national Symposium for Semantic Mining in Biomedicine, Cambridge, Oct, 2010: 110-115.
[7] LAI L, QIN L, LIN X, et al. Scalable distributed subgraph enumeration[J]. Proceedings of the VLDB Endowment,2016, 10(3): 217-228.
[8] SUN S, LUO Q. In-memory subgraph matching: an in-depth study[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, Portland, Jun 14-19, 2020. New York: ACM, 2020: 1083-1098.
[9] BI F, CHANG L, LIN X, et al. Efficient subgraph matching by postponing Cartesian products[C]//Proceedings of the 2016 International Conference on Management of Data, San Francisco, Jun 26-Jul 1, 2016. New York: ACM, 2016: 1199-1214.
[10] REN X, WANG J. Exploiting vertex relationships in speeding up subgraph isomorphism over large graphs[J]. Proceedings of the VLDB Endowment, 2015, 8(5): 617-628.
[11] 许文, 宋文爱, 富丽贞, 等. 面向大规模图数据的分布式子图匹配算法[J]. 计算机科学, 2019, 46(4): 28-35.
XU W, SONG W A, FU L Z, et al. Distributed subgraph matching algorithm for large scale graph data[J]. Computer Science, 2019, 46(4): 28-35.
[12] LAI L, QIN L, LIN X, et al. Scalable subgraph enumeration in MapReduce[J]//Proceedings of the VLDB Endowment,2015, 8(10): 974-985.
[13] QIAO M, ZHANG H, CHENG H. Subgraph matching: on compression and computation[J]. Proceedings of the VLDB Endowment, 2017, 11(2): 176-188.
[14] WANG X, CHAI L, XU Q, et al. Efficient subgraph matching on large RDF graphs using MapReduce[J]. Data Science and Engineering, 2019, 4: 24-43.
[15] TRAN H N, KIM J, HE B. Fast subgraph matching on large graphs using graphics processors[C]//LNCS 9049: Proceedings of the 20th International Conference on Database Systems for Advanced Applications, Hanoi, Apr 20-23, 2015. Cham: Springer, 2015: 299-315.
[16] ZENG L, ZOU L, ?ZSU M T, et al. GSI: GPU-friendly subgraph isomorphism[C]//Proceedings of the 36th Inter-national Conference on Data Engineering, Dallas, Apr 20-24, 2020. Piscataway: IEEE, 2020: 1249-1260.
[17] GUO W, LI Y, SHA M, et al. GPU-accelerated subgraph enumeration on partitioned graphs[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, New York, Jun 14-19, 2020. New York: ACM, 2020: 1067-1082.
[18] CUDA parallel computing platform[EB/OL]. [2021-09-04]. http://www.nvidia.com/object/cuda home new.html.
[19] ALAM M, PERUMALLA K S, SANDERS P. Novel parallel algorithms for fast multi-GPU-based generation of massive scale-free networks[J]. Data Science and Engineering, 2019, 4: 61-75.
[20] GALLET B, GOWANLOCK M. Heterogeneous CPU-GPU epsilon grid joins: static and dynamic work partitioning strategies[J]. Data Science and Engineering, 2021, 6: 39-62.
[21] KARYPIS G, KUMAR V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 359-392.
[22] WOOKS H, JINSOO L, JEONGH L. TurboISO: towards ultrafast and robust subgraph isomorphism search in large graph databases[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, Jun 22-27, 2013. New York: ACM, 2013: 337-348.
[23] SUN Z, WANG H, WANG H, et al. Efficient subgraph matching on billion node graphs[J]. Proceedings of the VLDB Endowment, 2012, 5(9): 788-799.
[24] BIBEK B, HANG L, HUANG H H. CECI: compact embed-ding cluster index for scalable subgraph matching[C]//Proceedings of the 2019 International Conference on Management of Data, Amsterdam, Jun 30-Jul 5, 2019. New York: ACM, 2019: 1447-1462.
[25] MYOUNGJI H, HYUNJOON K, GEONMO G, et al. Efficient subgraph matching: harmonizing dynamic programming[C]//Proceedings of the 2019 International Conference on Management of Data, Amsterdam, Jun 30-Jul 5, 2019. New York: ACM, 2019: 1429-1446.
[26] SEUNG W M, VIKRAM S M, ZAID Q, et al. EMOGI: efficient memory-access for out-of-memory graph-traversal in GPUs[J].Proceedings of VLDB Endowment, 2020, 14(2): 114-127.
[27] WANG L, WANG Y, OWENS J D. Fast parallel subgraph matching on the GPU[C]//Proceedings of the 2016 ACM Symposium on High-Performance Parallel and Distributed Computing, Kyoto, May 31-Jun 4, 2016. New York: ACM, 2016.
[28] WebGraph Project Website. Laboratory for web algorithmics[EB/OL]. [2021-09-04]. http://law.di.unimi.it/index.php.
[29] LESKOVEC J, LANG K J, DASGUPTA A, et al. Community structure in large networks: natural cluster sizes and the absence of largewell-defined clusters[J]. Internet Mathematics, 2009, 6(1): 29-123.
[30] DOMENICO M D, LIMA A, MOUGEL P, et al. The anatomy of a scientific rumor[J]. Scientific Reports, 2013, 3(1): 1-9. |