[1] ZHAO J, XIE X, XU X, et al. Multi-view learning over-view: recent progress and new challenges[J]. Information Fusion, 2017, 38: 43-54.
[2] FU L, LIN P, VASILAKOS A V, et al. An overview of recent multi-view clustering[J]. Neurocomputing, 2020, 402: 148-161.
[3] KANG Z, GUO Z P, HUANG S D, et al. Multiple partitions aligned clustering[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China,Aug 10-16, 2019: 2701-2707.
[4] SAXENA A, PRASAD M, GUPTA A, et al. A review of clustering techniques and developments[J]. Neurocomputing, 2017, 267: 664-681.
[5] HUANG S D, XU Z, TSANG I W, et al. Auto-weighted multi-view co-clustering with bipartite graphs[J]. Information Sciences, 2020, 512: 18-30.
[6] VENTURA C, VARAS D, VILAPLANA V, et al. Multi-resolution co-clustering for uncalibrated multiview seg-mentation[J]. Signal Processing: Image Communication, 2019, 76: 151-166.
[7] LU Y T, WANG L T, LU J F, et al. Multiple kernel cluster-ing based on centered kernel alignment[J]. Pattern Recog-nition, 2014, 47(11): 3656-3664.
[8] MA S X, LIU Y H, ZHENG Q H, et al. Multiview spectral clustering via complementary information[J]. Concurrency and Computation Practice & Experience, 2020, 33(15): e5701.
[9] WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1116-1129.
[10] HUANG S D, KANG Z, TSANG I W, et al. Auto-weighted multi-view clustering via kernelized graph learning[J]. Pattern Recogition, 2019, 88: 174-184.
[11] NIE F P, CAI G H, I X L. Multi-view clustering and semi-supervised classification with adaptive neighbors[C]//Pro-ceedings of the 2017 AAAI Conference on Artificial Intel-ligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 2408-2414.
[12] ZHANG C, HU Q, FU H, et al. Latent multi-view subspace clustering[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4333-4341.
[13] ZHENG Q H, ZHU J H, TIAN Z Q, et al. Constrained bilinear factorization multi-view subspace clustering[J]. Knowledge-based Systems, 2020, 194: 105514.
[14] LIN Z, LIU R, SU Z. Linearized alternating direction me-thod with adaptive penalty for low-rank representation[C]//Advances in Neural Information Processing Systems 24, Gra-nada, Dec 12-15, 2011. Red Hook: Curran Associates, 2011: 612-620.
[15] LIU G C, LIN Z C, YAN S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[16] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[17] BOYD S, VANDENBERGHE L, FAYBUSOVICH L. Convex optimization[J]. IEEE Transactions on Automatic Control, 2006, 51(11): 1859.
[18] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Advances in Neural Infor-mation Processing Systems 14, Vancouver, Dec 3-8, 2001. Cambridge: MIT Press, 2001: 849-856.
[19] CORTES C, MOHRI M, ROSTAMIZADEH A. Learning non-linear combinations of kernels[C]//Advances in Neural Information Processing Systems 22, Vancouver, Dec 7-10, 2009. Red Hook: Curran Associates, 2009: 396-404.
[20] KUMAR A, RAI P, DAUME H. Co-regularized multi-view spectral clustering[C]//Advances in Neural Information Pro-cessing Systems 24, Granada, Dec 12-15, 2011. Red Hook: Cur-ran Associates, 2011: 1413-1421.
[21] XIA R, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Pro-ceedings of the 28th AAAI Conference on Artificial Intel-ligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 2149-2155.
[22] NIE F P, LI J, LI X L. Parameter-free auto-weighted mul-tiple graph learning: a framework for multiview clustering and semi-supervised classification[C]//Proceedings of the 25th International Joint Conference on Artificial Intelli-gence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 1881-1887.
[23] BRBIC M, KOPRIV I. Multi-view low-rank sparse subspace clustering[J]. Pattern Recognition, 2018, 73: 247-258.
[24] LIN S L, GUO Z, TING S. Simultaneously learning fea-turewise weights and local structures for multi-view sub-space clustering[J]. Knowledge-Based Systems, 2020, 205: 106280. |