[1] KALANTARI N K, WANG T C, RAMAMOORTHI R. Lear-ning-based view synthesis for light field cameras[J]. ACM Transactions on Graphics, 2016, 35(6): 1-10.
[2] LI T, LUN D P K, CHAN Y H. Robust reflection removal based on light field imaging[J]. IEEE Transactions on Image Processing, 2018, 28(4): 1798-1812.
[3] ZHANG M, JI W, PIAO Y, et al. LFNet: light field fusion network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 6276-6287.
[4] ZHU H, ZHANG Q, WANG Q. 4D light field superpixel and segmentation[J]. IEEE Transactions on Image Processing, 2020, 29: 85-99.
[5] SI L, WANG Q. Dense depth-map estimation and geometry inference from light fields via global optimization[C]//LNCS 10113: Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, Nov 21-23, 2016. Cham: Springer, 2016: 83-98.
[6] CHENG H D, SHI X J. A simple and effective histogram equalization approach to image enhancement[J]. Digital Signal Processing, 2004, 14(2): 158-170.
[7] SHEET D, GARUD H, SUVEER A, et al. Brightness pre-serving dynamic fuzzy histogram equalization[J]. IEEE Tran-sactions on Consumer Electronics, 2010, 56(4): 2475-2480.
[8] YUN S H, KIM J H, KIM S. Contrast enhancement using a weighted histogram equalization[C]//Proceedings of the 2011 IEEE International Conference on Consumer Electronics, Las Vegas, Jan 9-12, 2011. Piscataway: IEEE, 2011: 203-204.
[9] HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive gamma correction with weigh-ting distribution[J]. IEEE Transactions on Image Processing, 2012, 22(3): 1032-1041.
[10] WANG W, SUN N, NG M K. A variational gamma correction model for image contrast enhancement[J]. Inverse Problems & Imaging, 2019, 13(3): 461.
[11] LAND E H, MCCANN J J. Lightness and retinex theory[J].Journal of the Optical Society of America, 1971, 61(1): 1-11.
[12] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Tran-sactions on Image Processing, 1997, 6(3): 451-462.
[13] RAHMAN Z, JOBSON D J, WOODELL G W. A multiscale retinex for color rendition and dynamic range compression[C]//Proceedings of SPIE-The International Society for Optical Engineering, Denver, Aug 4, 1996. San Francisco: SPIE, 1996: 183-191.
[14] GUO X, LI Y, LING H. LIME: low-light image enhance-ment via illumination map estimation[J]. IEEE Transac-tions on Image Processing, 2016, 26(2): 982-993.
[15] LI M, LIU J, YANG W, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Tran-sactions on Image Processing, 2018, 27(6): 2828-2841.
[16] LV F, LU F, WU J, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//Proceedings of the British Machine Vision Conference 2018, Newcastle, Sep 3-6, 2018. Durham: BMVA Press, 2018: 220.
[17] 江泽涛, 覃露露. 一种基于U-Net生成对抗网络的低照度图像增强方法[J]. 电子学报, 2020, 48(2): 258-264.
JIANG Z T, QIN L L. Low-light image enhancement method based on U-Net generative adversarial network[J]. Acta Elec-tronica Sinica, 2020, 48(2): 258-264.
[18] XU K, YANG X, YIN B, et al. Learning to restore low-light images via decomposition-and-enhancement[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2278-2287.
[19] WEI C, WANG W, YANG W, et al. Deep retinex decom-position for low-light enhancement[J]. arXiv:1808.04560, 2018.
[20] 马红强, 马时平, 许悦雷, 等. 基于深度卷积神经网络的低照度图像增强[J]. 光学学报, 2019, 39(2): 91-100.
MA H Q, MA S P, XU Y L, et al. Low-light image enhance-ment based on deep convolutional neural network[J]. Acta Optica Sinica, 2019, 39(2): 91-100.
[21] 江泽涛, 覃露露, 秦嘉奇, 等. 一种基于 MDARNet 的低照度图像增强方法[J]. 软件学报, 2021, 32(12): 3977-3991.
JIANG Z T, QIN L L, QIN J Q, et al. Low-light image enhancement method based on MDARNet[J]. Journal of Software, 2021, 32(12): 3977-3991.
[22] 潘晓英, 魏苗, 王昊, 等. 多尺度融合残差编解码器的低照度图像增强方法[J]. 计算机辅助设计与图形学学报, 2022, 34(1): 104-112.
PAN X Y, WEI M, WANG H, et al. A multi-scale fusion residual encoder-decoder approach for low illumination image enhancement[J]. Journal of Computer-Aided Design & Com-puter Graphics, 2022, 34(1): 104-112.
[23] LV F, LI Y, LU F. Attention guided low-light image enhan-cement with a large scale low-light simulation dataset[J]. arXiv:1908.00682, 2019.
[24] 王克琪, 钱宇华, 梁吉业, 等. 局部-全局关系耦合的低照度图像增强[J]. 中国科学(信息科学), 2022, 52(3): 443-460.
WANG K Q, QIAN Y H, LIANG J Y, et al. Local-global coupling relationship based low-light image enhancement[J]. Science in China (Information Sciences), 2022, 52(3): 443-460.
[25] ZHANG Z, JIANG Y, JIANG J, et al. STAR: a structure-aware lightweight transformer for real-time image enhance-ment[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 4106-4115.
[26] GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1780-1789.
[27] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
[28] ZHENG S, GUPTA G. Semantic-guided zero-shot learning for low-light image/video enhancement[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Jan 4-8, 2022. Piscataway: IEEE, 2022: 581-590.
[29] LAMBA M, RACHAVARAPU K K, MITRA K. Harnes-sing multi-view perspective of light fields for low-light ima-ging[J]. IEEE Transactions on Image Processing, 2020, 30: 1501-1513.
[30] LAMBA M, MITRA K. Fast and efficient restoration of extremely dark light fields[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2022. Piscataway: IEEE, 2022: 1361-1370.
[31] ZHANG S, LAM E Y. An effective decomposition-enhance-ment method to restore light field images captured in the dark[J]. Signal Processing, 2021, 189: 108279.
[32] LIANG Z, WANG Y, WANG L, et al. Light field image super-resolution with transformers[J]. IEEE Signal Proces-sing Letters, 2022, 29: 563-567.
[33] ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 695-704.
[34] JIANG K, WANG Z, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8346-8355.
[35] YAN Q, ZHANG L, LIU Y, et al. Deep HDR imaging via a non-local network[J]. IEEE Transactions on Image Proces-sing, 2020, 29: 4308-4322.
[36] SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Proces-sing Systems 28, Montreal, Dec 7-12, 2015: 802-810.
[37] ZHANG S, GUO S, HUANG W, et al. V4D: 4D convolutional neural networks for video-level representation learning[J]. arXiv:2002.07442, 2020.
[38] SHEN X, DARMON F, EFROS A A, et al. RANSAC-Flow: generic two-stage image alignment[C]//LNCS 12349: Procee-dings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 618-637.
[39] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.
[40] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. |