[1] 刘琛, 林盈, 胡晓敏. 差分演化算法各种更新策略的对比分析[J]. 计算机科学与探索, 2013, 7(11): 983-993.
LIU C, LIN Y, HU X M. Analyses and comparisons of different update strategies for differential evolution[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 983-993.
[2] LIU Z Z, WANG Y. Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 870-884.
[3] 雍龙泉, 拓守恒, 史加荣. 约束处理技术及应用[J]. 计算机科学与探索, 2018, 12(6): 1013-1020.
YONG L Q, TUO S H, SHI J R. Constraint-handling technique and applications[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(6): 1013-1020.
[4] LIU B, GIELEN G G E, Fernández F V. Automated design of analog and high-frequency circuits[M]//Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2014.
[5] JIN Y C. Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm and Evolutionary Computation, 2011, 1(2): 61-60.
[6] JIN Y C, WANG H D, CHUGH T, et al. Data-driven evolutionary optimization: an overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3): 442-458.
[7] LIU B, ZHANG Q F, GIELEN GEORGES G E. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 180-192.
[8] WEI F F, CHEN W N, YANG Q, et al. A classifier-assisted level-based learning swarm optimizer for expensive optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 219-233.
[9] 杜欣, 吴晓斌, 倪友聪, 等. 代理模型帮助的SA层性能差分演化优化算法[J]. 计算机科学与探索, 2017, 11(11): 1733-1746.
DU X, WU X B, NI Y C, et al. Surrogate model assisted differential evolutionary for performance optimization at SA level[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(11): 1733-1746.
[10] 季新芳, 张勇, 巩敦卫, 等. 异构集成代理辅助的区间多模态粒子群优化算法[J]. 自动化学报, 2021. DOI:10.16383/j.aas.c210223.
JI X F, ZHANG Y, GONG D W, et al. Interval multimodal particle swarm optimization algorithm assisted by heterogeneous ensemble surrogate[J]. Acta Automatica Sinica, 2021. DOI: 10.16383/j.aas.c210223.
[11] SASENA MICHAEL J, PAPALAMBROS P, GOOVAERTS P. Exploration of metamodeling sampling criteria for constrained global optimization[J]. Engineering Optimization, 2002, 34(3): 263-278.
[12] YANNOU B, SIMPSON TIMOTHY W, BARTON RUSSELL R. Towards a conceptual design explorer using metamodeling approaches and constraint programming[C]//Proceedings of the 2003 ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference. Chicago: ASME, 2003: 605-614.
[13] SINGH H K, RAY T, SMITH W. Surrogate assisted simulated annealing (SASA) for constrained multi-objective optimization[C]//Proceedings of the 2010 IEEE Congress on Evolutionary Computation, Barcelona, Jul 18-23, 2010. Piscataway: IEEE, 2010: 1-8.
[14] REGIS ROMMEL G. Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 326-347.
[15] SINGH H K, ASAFUDDOULA M, RAY T. Solving problems with a mix of hard and soft constraints using modified infeasibility driven evolutionary algorithm (IDEA-M)[C]//Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, Jul 6-11, 2014. Piscataway: IEEE, 2014: 983-990.
[16] XUE F, LIU L, CHEN X X, et al. Crude oil distillation optimization using surrogate-aided constrained evolutionary optimization[C]//Proceedings of the 2019 IEEE Congress on Evolutionary Computation, Wellington, Jun 10-13, 2019. Piscataway: IEEE, 2019: 1118-1125.
[17] SINGH P, COUCKUYT I, FERRANTI F, et al. A constrained multi-objective surrogate-based optimization algorithm[C]//Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, Jul 6-11, 2014. Piscataway: IEEE, 2014: 3080-3087.
[18] KAZEMI M, WANG G G, RAHNAMAYAN S, et al. Metamodel-based optimization for problems with expensive objective and constraint functions[J]. Journal of Mechanical Design, 2011, 133(1): 014505.
[19] WANG H D, JIN Y C. A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems[J]. IEEE Transactions on Cybernetics, 2018, 50(2): 536-549.
[20] HANDOKO S D, KWOH C K, ONG Y S. Feasibility structure modeling: an effective chaperone for constrained memetic algorithms[J]. IEEE Transactions on Evolutaionry Computation, 2010, 14(5): 740-758.
[21] WANG Y, YIN D Q, YANG S X, et al. Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints[J]. IEEE Transactions on Cybernetics, 2019, 49(5): 1642-1656.
[22] HABIB A, SINGH H K, CHUGH T, et al. A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi/many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 1000-1014.
[23] SUN C L, LI Z, JIN Y C. Surrogate-assisted expensive evolutionary many-objective optimization[J]. Acta Automatica Sinica, 2022, 48(4): 1119-1128.
孙超利, 李贞, 金耀初. 模型辅助的计算费时进化高维多目标优化[J]. 自动化学报, 2022, 48(4): 1119-1128.
[24] 刘晓路, 陈盈果, 贺仁杰, 等. Kirging代理模型在对地观测卫星系统优化中的应用[J]. 自动化学报, 2012, 38(1): 120-127.
LIU X L, CHEN Y G, HE R J, et al. Application of Kriging surrogate model to optimization of earth observation satellite system[J]. Acta Automatica Sinica, 2012, 38(1): 120-127.
[25] 周爱民, 张青富, 张桂戌. 一种基于混合高斯模型的多目标进化算法[J]. 软件学报, 2014, 25(5): 913-928.
ZHOU A M, ZHANG Q F, ZHANG G X. Multiobjective evolutionary algorithm based on mixture Gaussian models[J]. Journal of Software, 2014, 25(5): 913-928.
[26] RASMUSSEN C E, NICKISCH H. Gaussian processes for machine learning (GPML) toolbox[J]. Journal of Machine Learning Research, 2010, 11: 3011-3015.
[27] RASMUSSEN C E. Gaussian processes in machine learning[C]//LNCS 3176: Advanced Lectures on Machine Learning ML Summer Schools 2003. Berlin, Heidelberg: Springer, 2004: 63-71.
[28] DENNIS J, TORCZON V. Managing approximation models in optimization[J]. Multidisciplinary Design Optimization State-of-the-Art, 1997, 5: 330-347.
[29] DAS S, SUGANTHAN P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31.
[30] DAS S, MULLICK S S, SUGANTHAN P N. Recent advances in differential evolution—an updated survey[J]. Swarm and Evolutionary Computation, 2016, 27: 1-30.
[31] WANG Y, CAI Z X. Combining multiobjective optimization with differential evolution to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 117-134.
[32] WANG Y, WANG B C, LI H X, et al. Incorporating the feasibility rule for constrained evolutionary optimization[J]. IEEE Transactions on Cybernetics, 2015, 46(12): 1-15.
[33] WANG B C, LI H X, LI J P, et al. Composite differential evolution for constrained evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1482-1495.
[34] WOLDESENBET Y G, YEN G G, TESSEMA B G. Constraint handling in multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 514-525.
[35] LIANG J J, RUNARSSON T P, MEZURA M, et al. Problem definitions and evaluation criteria for the CEC 2006 special session on real-parameter optimization[J]. Journal of Applied Mechanics, 2006, 41(8): 1-24.
[36] SINGH H K. Development of optimization methods to deal with current challenges in engineering design optimization[J]. AI Commununications, 2016, 29(1): 219-221.
[37] RAHI K H, SINGH H K, RAY T. Partial evaluation strategies for expensive evolutionary constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1103-1117.
[38] YANG Z, QIU H, GAO L, et al. Surrogate-assisted classification-collaboration differential evolution for expensive constrained optimization problems[J]. Information Sciences, 2020, 508: 50-63.
[39] MALLIPEDDI R, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization[R]. Singapore: Nanyang Technological University, 2010: 1-16.
|