[1] DING C, XIAO G, SHAN W. The stability theory of stream ciphers[M]. Berlin, Heidelberg: Springer, 1991.
[2] 张斌, 徐超, 冯登国. 流密码的设计与分析: 回顾、现在与展望[J]. 密码学报,2016, 3(6): 527-545.
ZHANG B, XU C, FENG D G. Design and analysis of stream ciphers: past, present and future directions[J]. Journal of Cryptologic Research, 2016, 3(6): 527-545.
[3] KRAUSE M. BDD-based cryptanalysis of keystream generators[C]//LNCS 2332: Proceedings of the 2002 International Conference on the Theory and Applications of Cryptographic Techniques, Amsterdam, Apr 28-May 2, 2002. Berlin, Heidelberg: Springer, 2002: 222-237.
[4] BRYANT R E. On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication[J]. IEEE Transactions on Computers, 1991, 40(2): 205-213.
[5] WANG Q, CARLET C, STANICA P, et al. Cryptographic properties of the hidden weighted bit function[J]. Discrete Applied Mathematics, 2014, 174: 1-10.
[6] WANG Q, TAN C. On the second-order nonlinearity of the hidden weighted bit function[J]. Discrete Applied Mathematics, 2016, 215: 197-202.
[7] WANG Q,?TAN C, FOO T. A family of cryptographically significant Boolean functions based on the hidden weighted bit function[C]//LNCS 8565: Proceedings of the 16th Inter-national Conference on Information Security and Cryptology, Seoul, Nov 27-29, 2013. Cham: Springer, 2014: 311-322.
[8] WANG Q,?TAN C, STANICA P. Concatenations of the hidden weighted bit function and their cryptographic properties[J].?Advances in Mathematics of Communications, 2014,?8(2):?153-165.
[9] SALAGEAN A. On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two[J]. IEEE Transactions on Information Theory, 2005, 51(3): 1145-1150.
[10] MASSEY J. Shift-register synthesis and BCH decoding[J]. IEEE Transactions on Information Theory, 1969, 15(1): 122-127.
[11] GAMES R, CHAN A. A fast algorithm for determining the complexity of a binary sequence with period 2n[J]. IEEE Transactions on Information Theory, 1983, 29(1): 144-146.
[12] STAMP M, MARTIN C F. An algorithm for the k-error linear complexity of binary sequences with period 2n[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1398-1401.
[13] ZHU F, QI W. The 2-error linear complexity of 2n-periodic binary sequences with linear complexity 2n-1[J]. Journal of Electronics, 2007, 24(3): 390-395.
[14] 王喜凤, 张伟, 周建钦. 具有第二下降点6错线性复杂度的2n-周期序列[J]. 计算机科学与探索, 2016, 10(6): 838-846.
WANG X F, ZHANG W, ZHOU J Q. 2n-periodic binary sequences with 6-error linear complexity as the second descent point[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(6): 838-846.
[15] 周建钦. 2n周期平衡二元序列的2错线性复杂度[J]. 苏州科技学院学报(自然科学版), 2013, 30(4): 1-7.
ZHOU J Q. On the 2-error linear complexity of 2n-periodic balanced binary sequences[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2013, 30(4): 1-7.
[16] ZHOU J, LIU W. The k-error linear complexity distribution for 2n-periodic binary sequences[J]. Designs, Codes and Cryptography, 2014, 73(1): 55-75.
[17] CHANG Z, KE P. On the error linear complexity spectrum of binary sequences with period of power of two[J]. Chinese Journal of Electronics, 2015, 24(2): 366-372.
[18] PAN W, BAO Z, LIN D, et al. The linear complexity and 2-error linear complexity distribution of 2n-periodic binary sequences with fixed Hamming weight[C]//LNCS 9977: Proceedings of the 2016 International Conference on Infor-mation and Communications Security, Singapore, Nov 29-Dec 2,?2016. Cham: Springer, 2016: 107-123.
[19] HASSE H. Theorie der h?heren differentiale in einem algebraischen funktionenk?rper mit vollkommenem kons-tantenk?rper bei beliebiger charakteristik[J]. Journal Fur Die Reine Und Angewandte Mathematik, 1936, 175: 50-54.
[20] NIEDERREITER H, WINTERHOF A. Applied number theory[M]. Berlin, Heidelberg: Springer, 2015.
[21] SUN Y, WANG Q, YAN T. The exact autocorrelation distribution and 2-adic complexity of a class of binary sequ-ences with almost optimal autocorrelation[J]. Cryptography Communications, 2018, 10(3): 467-477. |