[1] PADEN B, ?AP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33-55.
[2] SANG H F, CHEN Z Z, HE D K. Human motion prediction based on attention mechanism[J]. Multimediatools and Applications, 2020, 79(9): 5529-5544.
[3] YANG H, YUAN C, ZHANG L, et al. STA-CNN: convolutional spatial-temporal attention learning for action recognition[J]. IEEE Transactions on Image Processing, 2020, 29: 5783-5793.
[4] 邓辉, 徐杨. 融入注意力和密集连接的轻量型人体姿态估计[J]. 计算机工程与应用, 2022, 58(16): 265-273.
DENG H, XU Y. Lightweight human pose estimation based on attention and dense connection[J]. Computer Engineering and Applications, 2022, 58(16): 265-273.
[5] GUI L Y, WANG Y X, LIANG X, et al. Adversarial geometry-aware human motion prediction[C]//LNCS 11208: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 823-842.
[6] KUNDU J N, GOR M, BABU R V. BiHMP-GAN: bidirectional 3D human motion prediction GAN[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 8553-8560.
[7] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 3844-3852.
[8] GUO X, CHOI J. Human motion prediction via learning local structure representations and temporal dependencies[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 2580-2587.
[9] MAO W, LIU M, SALZMANN M, et al. Learning trajectory dependencies for human motion prediction[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9489-9497.
[10] MAO W, LIU M, SALZMANN M. History repeats itself: human motion prediction via motion attention[C]//LNCS 12359: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 474-489.
[11] ZHOU H, GUO C, ZHANG H, et al. Learning multiscale correlations for human motion prediction[C]//Proceedings of the 2021 IEEE International Conference on Development and Learning, Beijing, Aug 23-26, 2021. Piscataway: IEEE, 2021: 1-7.
[12] MAO W, LIU M, SALZMANN M, et al. Multi-level motion attention for human motion prediction[J]. International Journal of Computer Vision, 2021, 129(9): 2513-2535.
[13] MAO W, LIU M, SALZMANN M. Generating smooth pose sequences for diverse human motion prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 13289-13298.
[14] WANG H, HO E S L, SHUM H P H, et al. Spatio-temporal manifold learning for human motions via long-horizon modeling[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 27 (1): 216-227.
[15] LI M, CHEN S, ZHAO Y, et al. Dynamic multiscale graph neural networks for 3D skeleton based human motion prediction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 214-223.
[16] DANG L, NIE Y, LONG C, et al. MSR-GCN: multi-scale residual graph convolution networks for human motion prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 11447-11456.
[17] LI M, CHEN S, ZHAO Y, et al. Multiscale spatio-temporal graph neural networks for 3D skeleton-based motion prediction[J]. IEEE Transactions on Image Processing, 2021, 30: 7760-7775.
[18] YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 7444-7452.
[19] 严春满, 王铖. 卷积神经网络模型发展及应用[J]. 计算机科学与探索, 2021, 15(1): 27-46.
YAN C M, WANG C. Development and application of convolutional neural network model[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 27-46.
[20] 邓淼磊, 高振东, 李磊, 等. 基于深度学习的人体行为识别综述[J]. 计算机工程与应用, 2022, 58(13): 14-26.
DENG M L, GAO Z D, LI L, et al. Overview of human behavior recognition based on deep learning[J]. Computer Engineering and Applications, 2022, 58(13): 14-26.
[21] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177.
HE J, GUO Z L, LI L Y, et al. Human activity recognition technology based on sliding windowand convolutional neural network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 168-177.
[22] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7794-7803.
[23] 梁延禹, 李金宝. 多尺度非局部注意力网络的小目标检测算法[J]. 计算机科学与探索, 2020, 14(10): 1744-1753.
LIANG Y Y, LI J B. Small objects detection method based on multi-scale non-local attention network[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1744-1753.
[24] 盖杉, 王俊生. 基于深度学习的非局部注意力增强网络图像去雨算法研究[J]. 电子学报, 2020, 48(10): 1899-1908.
GAI S, WANG J S. Image raindrop algorithm research using nonlocal attention enhanced network based on deep learning[J]. Journal of Electronics & Information Technology, 2020, 48(10): 1899-1908.
[25] WANG B, ADELI E, CHIU H, et al. Imitation learning for human pose prediction[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 7124-7133.
[26] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 60-65.
[27] VON MARCARD T, HENSCHEL R, BLACK M J, et al. Recovering accurate 3D human pose in the wild using IMUs and a moving camera[C]//LNCS 11214: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 614-631.
[28] MARTINEZ J, BLACK M J, ROMERO J. On human motion prediction using recurrent neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2891-2900.
[29] LI C, ZHANG Z, LEE W S, et al. Convolutional sequence to sequence model for human dynamics[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5226-5234.
[30] LI M, CHEN S, CHEN X, et al. Symbiotic graph neural networks for 3D skeleton-based human action recognition and motion prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 3316-3333. |