[1] 张艳菊, 陆畅. 数据缺失下的IFCM-Slope One协同过滤推荐算法[J]. 统计与决策, 2020(9): 185-188.
ZHANG Y J, LU C. IFCM-Slope One collaborative filter-ing recommendation algorithm under data missing[J]. Stati-stics & Decision, 2020(9): 185- 188.
[2] 李剑锋, 封林慧, 于天一. 认同度修正下的近相邻改进推荐算法研究[J]. 计算机工程与应用, 2022, 58(7): 116-121.
LI J F, FENG L H, YU T Y. Research on near neighbor improved recommendation algorithm based on recognition degree correction[J]. Computer Engineering and Applica-tions, 2022, 58(7): 116-121.
[3] HIDASI B, KARAT Z A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv:1511.06939, 2015.
[4] KANG W C, MCAULEY J. Self-attentive sequential recom-mendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Washington: IEEE Computer Society, 2018: 197-206.
[5] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recom-mendation with bidirectional encoder representations from Transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 1441-1450.
[6] TANG J X, WANG K W. Personalized top-n sequential recom-mendation via convolutional sequence embedding[C]//Pro-ceedings of the 11th ACM International Conference on Web Search and Data Mining, California, Feb 5-9, 2018. New York: ACM, 2018: 565-573.
[7] SHANI G, HECHERMAN D, BRAFMAN R I. An MDP-based recommender system[J]. The Journal of Machine Learning Research, 2005, 6: 1265-1295.
[8] HE R N, MCAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]//Proceed-ings of the 16th International Conference on Data Mining, Barcelona, Dec 12-15, 2016. Washington: IEEE Computer Society, 2016: 191-200.
[9] RENDLE S, FREUDEN T C, SCHMIDT T L. Factorizing personalized Markov chains for next-basket recommenda-tion[C]//Proceedings of the 19th International Conference on World Wide Web, Raleigh, Apr 26- 30, 2010. New York: ACM, 2010: 811-820.
[10] CHEN Q W, ZHAN H, LI W, et al. Behavior sequence transformer for e-commerce recommendation in Alibaba[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data, Alaska, Aug 5, 2019. New York: ACM, 2019: 1-4.
[11] JI W, WANG K Q, WANG X L, et al. Sequential recommen-der via time-aware attentive memory network[C]//Proceed-ings of the 29th ACM International Conference on Informa-tion & Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 565-574.
[12] ZHU Y, LI H, LIAO Y, et al. What to do next: modeling user behaviors by time-LSTM[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 3602-3608.
[13] WANG D J, XU D W, YU D J, et al. Time-aware sequence model for next-item recommendation[J]. Applied Intellige-nce, 2021, 51(2): 906-920.
[14] LI J C, WANG Y J, MCAULEY J J. Time interval aware self-attention for sequential recommendation[C]//Proceed-ings of the 13th International Conference on Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 322-330.
[15] 陈聪, 张伟, 王骏. 带有时间预测辅助任务的会话式序列推荐[J]. 计算机学报, 2021, 44(9): 1841-1853.
CHEN C, ZHANG W, WANG J. Session-based sequential recommendation with auxiliary time prediction[J]. Chinese Journal of Computers, 2021, 44(9): 1841-1853.
[16] ZHANG T T, ZHAO P P, LIU Y, et al. Feature-level deeper self-attention network for sequential recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4320-4326.
[17] SINGER U, ROITMAN H, ESHEL Y, et al. Sequential modeling with multiple attributes for watchlist recommen-dation in e-commerce[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, Alaska, Feb 21-25, 2022. New York: ACM, 2022: 937-946.
[18] ZHOU K, WANG H, ZHAO W X, et al. S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 1893-1902.
[19] CUI Q, WU S, LIU Q, et al. MV-RNN: a multi-view recur-rent neural network for sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(2): 317-331.
[20] HE R N, KANG W C, MCAULEY J. Translation-based recommendation[C]//Proceedings of the 11th ACM Con-ference on Recommender Systems, Italy, Aug 27-31, 2017. New York: ACM, 2017: 161-169.
[21] ZHANG Q, CAO L B, SHI C Y, et al. Neural time-aware sequential recommendation by jointly modeling preference dynamics and explicit feature couplings[J]. IEEE Transac-tions on Neural Networks and Learning Systems, 2021, 13(10): 5125-5137.
[22] 陈乔松, 郭傲东, 杜雨露, 等. 融合知识图谱与图片特征的推荐模型[J]. 电子与信息学报, 2022, 44(5): 1723-1733.
CHEN Q S, GUO A D, DU Y L, et al. Recommendation model by integrating knowledge graph and image features[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1723-1733.
[23] LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: shortterm attention/memory priority model for session-based recom-mendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM,2018: 1831-1839.
[24] WU L W, LI S Q, HSIEH C J, et al. SSE-PT: sequential recommendation via personalized transformer[C]//Proceed-ings of the 14th ACM Conference on Recommender Systems, Brazil, Sep 22-26, 2020. New York: ACM, 2020: 328-337.
[25] 张昕, 刘思远, 徐雁翎. 结合注意力机制的知识感知推荐算法[J]. 计算机工程与应用, 2022, 58(9): 168-174.
ZHANG X, LIU S Y, XU Y L. Knowledge-aware recom-mendation algorithm combined with attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 168-174.
[26] ZHANG J Q, WANG D J, YU D J. TLSAN: time-aware long-and short-term attention network for next-item recom-mendation[J]. Neurocomputing, 2021, 441: 179-191.
[27] LIN G Y, GAO C, LI Y F, et al. Dual contrastive network for sequential recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 2686-2691.
[28] WANG S J, HU L, WANG Y, et al. Sequential recommen-der systems: challenges, progress and prospects[C]//Procee-dings of the 28th International Joint Conference on Artific-ial Intelligence, Macao, China, Aug 10-16, 2019: 6332-6338.
[29] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[30] MCAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Aug 9-13, 2015. New York: ACM, 2015: 43-52.
[31] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014. |