[1] MA C, ZHOU L, LI J, et al. EAOD-Net: effective anomaly object detection networks for X-ray images[J]. IET Image Processing, 2022, 16(10): 2638-2651.
[2] ZHAO C, ZHU L, DOU S, et al. Detecting overlapped objects in X-ray security imagery by a label-aware mechanism[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 998-1009.
[3] MERY D, SVEC E, ARIAS M, et al. Modern computer vision techniques for X-ray testing in baggage inspection[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(4): 682-692.
[4] WEI Y, WANG Y, SONG H. CFPA-Net: cross-layer feature fusion and parallel attention network for detection and classification of prohibited items in X-ray baggage images[C]//Proceedings of the 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems, Xi’an, Nov 7-8, 2021. Piscataway: IEEE, 2021: 203-207.
[5] SHAO F, LIU J, WU P, et al. Exploiting foreground and background separation for prohibited item detection in overlapping X-ray images[J]. Pattern Recognition, 2022, 122: 108261.
[6] HU B, ZHANG C, WANG L, et al. Multi-label X-ray imagery classification via bottom-up attention and meta fusion[C]//Proceedings of the 15th Asian Conference on Computer Vision, Kyoto, Nov 30-Dec 4, 2020. Cham: Springer, 2021: 173-190.
[7] WANG M, DU H, MEI W. Information-exchange enhanced feature pyramid network (IEFPN) for detecting prohibited items in X-ray security images[C]//Proceedings of the 2021 7th International Conference on Computer and Communications, Chengdu, Dec 10-13, 2021. Piscataway: IEEE, 2021: 731-735.
[8] TURCSANY D, MOUTON A P, BRECKON T P. Improving feature-based object recognition for X-ray baggage security screening using primed visual words[C]//Proceedings of the 2013 IEEE International Conference on Industrial Technology, Cape Town, Feb 25-28, 2013. Piscataway: IEEE, 2013: 1140-1145.
[9] BASTAN M, YOUSEFI M R, BREUEL T M. Visual words on baggage X-ray images[C]//Proceedings of the 2011 International Conference on Computer Analysis of Images and Patterns, Seville, Aug 29-31, 2011. Berlin, Heidelberg: Springer, 2011: 360-368.
[10] FRANZEL T, SCHMIDT U, ROTH S. Object detection in multi-view X-ray images[C]//Proceedings of the Joint 34th DAGM and 36th OAGM Symposium, Graz, Aug 28-31, 2012. Berlin, Heidelberg: Springer, 2012: 144-154.
[11] MERY D, RIFFO V, ZUCCAR I, et al. Object recognition in X-ray testing using an efficient search algorithm in multiple views[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2017, 59(2): 85-92.
[12] MERY D. Automated detection in complex objects using a tracking algorithm in multiple X-ray views[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado, Jun 20-25, 2011. Washington: IEEE Computer Society, 2011: 41-48.
[13] 王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312.
[14] 陈一潇, 阿里甫·库尔班, 林文龙, 等. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245.
CHEN Y X, ALIFU K, LIN W L, et al. CA-YOLOv5 for crowded pedestrian detection[J]. Computer Engineering and Applications, 2022, 58(9): 238-245.
[15] 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学精密工程, 2020, 28(5): 13-20.
FAN L L, ZHAO H W, ZHAO H Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and Precision Engineering, 2020, 28(5): 13-20.
[16] AK?AY S, KUNDEGORSKI M E, DEVEREUX M, et al. Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery[C]//Proceedings of the 2016 IEEE International Conference on Image Processing, Phoenix, Sep 25-28, 2016. Piscataway: IEEE, 2016: 1057-1061.
[17] AKCAY S, KUNDEGORSKI M E, WILLCOCKS C G, et al. Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(9): 2203-2215.
[18] AKCAY S, BRECKON T P. An evaluation of region based object detection strategies within X-ray baggage security imagery[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 1337-1341.
[19] LIU J, LENG X, LIU Y. Deep convolutional neural network based object detector for X-ray baggage security imagery[C]//Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence, Portland, Nov 4-6, 2019. Piscataway: IEEE, 2019: 1757-1761.
[20] RAMPERSHAD Y, VIRIRI S, GWETU M. Automatic baggage threat detection using deep attention networks[C]//Proceedings of the 2021 Southern African Conference for Artificial Intelligence Research, Durban, Dec 6-10, 2021. Berlin, Heidelberg: Springer, 2021: 56-173.
[21] TAO R, WEI Y, JIANG X, et al. Towards real-world X-ray security inspection: a high-quality benchmark and lateral inhibition module for prohibited items detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 10923-10932.
[22] WANG B, ZHANG L, WEN L, et al. Towards real-world prohibited item detection: a large-scale X-ray benchmark[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 5412-5421.
[23] GLENN J, ALEX S, JIRKA B, et al. ultralytics/yolov5: v6.0-YOLOv5n ‘Nano’ models, roboflow integration, TensorFlow export, OpenCV DNN support[EB/OL]. (2020-05-18) [2022-09-22]. https://github.com/ultralytics/yolov5.
[24] HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs) [EB/OL]. (2020-06-28) [2022-09-22]. https://arxiv.org/abs/1606.08415.
[25] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 770-778.
[26] XIE S, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 1492-1500.
[27] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2117-2125.
[28] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 390-391.
[29] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[30] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understan-ding[EB/OL]. (2019-05-24) [2022-09-22]. https://arxiv.org/abs/1810.04805.
[31] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
[32] ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2017-10-25) [2022-09-22]. https://arxiv.org/abs/1710.09412.
[33] WEI Y, TAO R, Wu Z, et al. Occluded prohibited items detection: an X-ray security inspection benchmark and de-occlusion attention module[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 138-146.
[34] MIAO C J, XIE L G, WAN F, et al. SIXray: a large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2119-2128.
[35] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-09-22]. https://arxiv.org/abs/1804.02767.
[36] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-09-22]. https://arxiv.org/abs/2004.10934.
[37] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[38] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/ CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9627-9636.
[39] WANG M, DU H, MEI W, et al. Material-aware cross-channel interaction attention (MCIA) for occluded prohibited item detection[J]. The Visual Computer, 2023, 39(7): 2865-2877.
[40] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 91-99.
[41] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017:2980-2988. |