[1] KUMAR N, RAUBAL M. Applications of deep learning in congestion detection, prediction and alleviation: a survey[J]. Transportation Research Part C: Emerging Technologies, 2021, 133: 103432.
[2] JIN G, LIANG Y, FANG Y, et al. Spatio-temporal graph neural networks for predictive learning in urban computing: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2023. DOI: 10.1109/TKDE.2023.3333824.
[3] LI M, ZHU Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2021: 4189-4196.
[4] PENG H, WANG H, DU B, et al. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J]. Information Sciences, 2020, 521: 277-290.
[5] LI F, FENG J, YAN H, et al. Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(1): 1-21.
[6] LIANG Y, KE S, ZHANG J, et al. GeoMAN: multi-level attention networks for geo-sensory time series prediction[C]//Proceedings of the 2018 International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3428-3434.
[7] YAO H, TANG X, WEI H, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 5668-5675.
[8] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]//Proceedings of the 2018 International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018.
[9] TORMENE P, GIORGINO T, QUAGLINI S, et al. Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation[J]. Artificial Intelligence in Medicine, 2009, 45(1): 11-34.
[10] YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2018: 18-53.
[11] WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 2019 International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 1907-1913.
[12] ZHANG Q, CHANG J, MENG G, et al. Spatio-temporal graph structure learning for traffic forecasting[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 1177-1185.
[13] BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 17804-17815.
[14] CHO K, VAN B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[EB/OL]. [2023-03-02]. https://arxiv.org/abs/1409.1259.
[15] HAN Y, WANG C, REN Y, et al. Short-term prediction of bus passenger flow based on a hybrid optimized LSTM network[J]. ISPRS International Journal of Geo-Information, 2019, 8(9): 366.
[16] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[17] ZHENG C, FAN X, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 1234-1241.
[18] ZHANG Q, LI C, SU F, et al. Spatio-temporal residual graph attention network for traffic flow forecasting[J]. IEEE Internet of Things Journal, 2023, 10(13): 11518-11532.
[19] ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
[20] JIN G, WANG Q, ZHU C, et al. Addressing crime situation forecasting task with temporal graph convolutional neural network approach[C]//Proceedings of the 2020 International Conference on Measuring Technology and Mechatronics Automation. Piscataway: IEEE, 2020: 474-478.
[21] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 2018 International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3634-3640.
[22] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2023-03-02]. https://arxiv.org/abs/1710.10903.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[24] ZHANG J B, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 2017 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2017: 1655-1661.
[25] YE Y, CHEN L, XUE F. Passenger flow prediction in bus transportation system using ARIMA models with big data[C]//Proceedings of the 2019 International Conference on Cyber-enabled Distributed Computing and Knowledge Discovery. Piscataway: IEEE, 2019: 436-443.
[26] MOLA A J, SCHOBLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
[27] LUO D, ZHAO D, KE Q, et al. Fine-grained service-level passenger flow prediction for bus transit systems based on multitask deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11): 7184-7199.
[28] LUO D, ZHAO D, KE Q, et al. Spatiotemporal hashing multigraph convolutional network for service-level passenger flow forecasting in bus transit systems[J]. IEEE Internet of Things Journal, 2021, 9(9): 6803-6815.
[29] WU Z, PAM S, LONG G, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 753-763.
[30] PENG L, WANG X, LU H, et al. Dynamic spatio-temporal multi-scale representation for bus Ridership prediction[C]//Proceedings of the 2023 International Joint Conference on Neural Networks. Piscataway: IEEE, 2023: 1-9.
[31] LIU L, CHEN J, WU H, et al. Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(4): 3377-3391.
[32] WANG J, JIANG J, JIANG W, et al. Libcity: an open library for traffic prediction[C]//Proceedings of the 29th International Conference on Advances in Geographic Information Systems. New York: ACM, 2021: 145-148.
[33] LIU J, GUAN W. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3): 82-85. |