[1] SUCHANEK F M, KASNECI G, WEIKU G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th Interna-tional Conference on World Wide Web, Banff, May 8-12, 2007. New York: ACM, 2007: 697-706.
[2] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nu-cleus for a web of open data[C]//Proceedings of the 6th International Semantic Web Conference, the 2nd Asian Se-mantic Web Conference, Busan, Nov 11-15, 2007. Berlin: Springer, 2007: 722-735.
[3] VRANDECIC D. Wikidata: a new platform for collaborative data collection[C]//Proceedings of the 21st International Conference on World Wide Web, Lyon, Apr 16-20, 2012. New York: ACM, 2012: 1063-1064.
[4] HOFFMANN R, ZHANG C, LING X, et al. Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Portland, Jun 19-24, 2011. Stroudsburg: ACL, 2011: 541-550.
[5] BERANT J, CHOU A, FROSTIG R, et al. Semantic parsing on freebase from question-answer pairs[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Oct 18-21, 2013. Stroudsburg: ACL, 2013: 1533-1544.
[6] SAXENA A, TRIPATHI A, TALUKDAR P P. Improving multi-hop question answering over knowledge graphs using know-ledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 4498-4507.
[7] HE H, BALAKRISHNAN A, ERIC M, et al. Learning sym-metric collaborative dialogue agents with dynamic know-ledge graph embeddings[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 1766-1776.
[8] 彭晏飞, 张睿思, 王瑞华, 等. 少样本知识图谱补全技术研究[J]. 计算机科学与探索, 2023, 17(6): 1268-1284.
PENG Y F, ZHANG R S, WANG R H, et al. Survey on few-shot knowledge graph completion technology[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1268-1284.
[9] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Trans-lating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, Lake Tahoe, Dec 5-8, 2013: 2787-2795.
[10] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omni Press, 2011: 809-816.
[11] 戴望州, 周志华. 归纳逻辑程序设计综述[J]. 计算机研究与发展, 2019, 56(1): 138-154.
DAI W Z, ZHOU Z H. A survey on inductive logic pro-gramming[J]. Journal of Computer Research and Develop-ment, 2019, 56(1): 138-154.
[12] MUGGLETON S. Inductive logic programming[J]. New Generation Computing, 1991, 8(4): 295-318.
[13] SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]// Proceedings of the 7th International Conference on Lear-ning Representations, New Orleans, May 6-9, 2019.
[14] DETTMERS T, MINERVINI P, STENETORP P, et al. Con-volutional 2D knowledge graph embeddings[C]//Procee-dings of the 32nd AAAI Conference on Artificial Intelli-gence, New Orleans, Feb 2-7, 2018. Palo Alto: AAAI, 2018: 1811-1818.
[15] NICKEL M, ROSASCO L, POGGIO T. Holographic em-beddings of knowledge graphs[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Palo Alto: AAAI, 2016: 1955-1961.
[16] YANG B, YIH S W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Lear-ning Representations, San Diego, May 7-9, 2015.
[17] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Mo-deling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on Semantic Web, Heraklion, Jun 3-7, 2018. Cham: Springer, 2018: 593-607.
[18] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[C]//Pro-ceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020.
[19] WANG Z, ZHANG J, FENG J, et al. Knowledge graph and text jointly embedding[C]//Proceedings of the 2014 Con-ference on Empirical Methods in Natural Language Proces-sing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1591-1601.
[20] XIE R, LIU Z, JIA J, et al. Representation learning of know-ledge graphs with entity descriptions[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Palo Alto: AAAI, 2016: 2659-2665.
[21] WANG B, SHEN T, LONG G, et al. Structure-augmented text representation learning for efficient knowledge graph completion[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 1737-1748.
[22] SCHOENMACKERS S, DAVIS J, ETZIONI O, et al. Lear-ning first-order Horn clauses from web text[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, Oct 9-11, 2010. Strouds-burg: ACL, 2010: 1088-1098.
[23] GALáRRAGA LA, TEFLIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in onto-logical knowledge bases[C]//Proceedings of the 22nd Inter-national Conference on World Wide Web, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 413-422.
[24] GALáRRAGA L, TEFLIOUDI C, HOSE K, et al. Fast rule mining in ontological knowledge bases with AMIE+[J]. The VLDB Journal, 2015, 24(6): 707-730.
[25] MEILICKE C, CHEKOL M W, RUFFINELLI D, et al. Anytime bottom-up rule learning for knowledge graph com-pletion[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. Palo Alto: AAAI, 2019: 3137-3143.
[26] OMRAN P G, WANG K, WANG Z. Scalable rule learning via learning representation[C]//Proceedings of the 27th In-ternational Joint Conference on Artificial Intelligence, Sto-ckholm, Jul 13-19, 2018: 2149-2155.
[27] HO V T, STEPANOVA D, GAD-ELRAB M H, et al. Rule learning from knowledge graphs guided by embedding models[C]//Proceedings of the 17th International Semantic Web Conference, Monterey, Oct 8-12, 2018. Cham: Sprin-ger, 2018: 72-90.
[28] YANG F, YANG Z, COHEN W W. Differentiable learning of logical rules for knowledge base reasoning[C]//Adva-nces in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 2319-2328.
[29] SADEGHIAN A, ARMANDPOUR M, DING P, et al. DRUM: end-to-end differentiable rule mining on knowledge graphs[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 15321-15331.
[30] WANG S, ZHONG W, TANG D, et al. Logic-driven con-text extension and data augmentation for logical reasoning of text[J]. arXiv:2105.03659, 2021.
[31] OUYANG S, ZHANG Z, ZHAO H. Fact-driven logical rea-soning[J]. arXiv:2105.10334, 2021.
[32] XU F, LIU J, LIN Q, et al. Logiformer: a two-branch graph transformer network for interpretable logical reasoning[C]//Proceedings of the 45th International ACM SIGIR Con-ference on Research and Development in Information Re-trieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1055-1065.
[33] PAN Y, LIU J, ZHANG L, et al. Incorporating logic rules with textual representations for interpretable knowledge graph reasoning[J]. Knowledge-Based Systems, 2023, 277: 110787.
[34] COHEN W W. TensorLog: a differentiable deductive data-base[J]. arXiv:1605.06523, 2016.
[35] KOK S, DOMINGOS P. Statistical predicate invention[C]//Proceedings of the 24th International Conference on Ma-chine Learning, Corvallis, Jun 20-24, 2007. New York: ACM, 2007: 433-440.
[36] WANG Z, ZHANG J, FENG J, et al. Knowledge graph em-bedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Qué-bec City, Jul 27-31, 2014. Palo Alto: AAAI, 2014: 1112-1119.
[37] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Procee-dings of the 29th AAAI Conference on Artificial Intelli-gence, Austin, Jan 25-30, 2015. Palo Alto: AAAI, 2015: 2181-2187.
[38] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 687-696.
[39] TROUILLON T, WELBL J, RIEDEL S, et al. Complex em-beddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080.
[40] YAO L, MAO C, LUO Y. KG-BERT: BERT for knowledge graph completion[J]. arXiv:1909.03193, 2019.
[41] KINGMA D P, BA J. Adam: a method for stochastic optimi-zation[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015.
[42] LI B, ZHOU H, HE J, et al. On the sentence embeddings from pre-trained language models[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 9119-9130.
[43] KENTON JD, TOUTANOVA LK. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North Ame-rican Chapter of the Association for Computational Lingui-stics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186.
[44] LAN Z, CHEN M, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representa-tions[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020. |