[1] JIAN C, GAO J, AO Y. Automatic surface defect detection for mobile phone screen glass based on machine vision[J]. Applied Soft Computing, 2017, 52: 348-358.
[2] HE Z, LIU Q. Deep regression neural network for industrial surface defect detection[J]. IEEE Access, 2020, 8: 35583-35591.
[3] LIU Y, XIAO H, XU J, et al. A rail surface defect detection method based on pyramid feature and lightweight convo-lutional neural network[J]. IEEE Transactions on Instrum-entation and Measurement, 2022, 71: 1-10.
[4] SINGH S A, DESAI K A. Automated surface defect detection framework using machine vision and convolutional neural networks[J]. Journal of Intelligent Manufacturing, 2023, 34(4): 1995-2011.
[5] LIANG F T, ZHOU Y, CHEN X, et al. Review of target detection technology based on deep learning[C]//Proce-edings of the 5th International Conference on Control Eng-ineering and Artificial Intelligence. New York: ACM, 2021: 132-135.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2015: 1440-1448.
[7] ZHANG K H, SHEN H K. Solder joint defect detection in the connectors using improved faster-RCNN algorithm[J]. Applied Sciences, 2021, 11(2): 576.
[8] YANG A M, JIANG T Y, HAN Y, et al. Research on appli-cation of on-line melting in-situ visual inspection of iron ore powder based on Faster R-CNN[J]. Alexandria Engine-ering Journal, 2022, 61(11): 8963-8971.
[9] KUMAR A, MANIKANDAN R. Brain tumor detection using deep neural network-based classifier[C]//Proceedings of the 2022 International Conference on Innovative Computing and Communications. Singapore: Springer, 2022: 173-181.
[10] GUO F, QIAN Y, RIZOS D, et al. Automatic rail surface defects inspection based on Mask R-CNN[J]. Transport-ation Research Record, 2021(11): 655-668.
[11] REN J S, WANG Y. Overview of object detection algor-ithms using convolutional neural networks[J]. Journal of Computer and Communications, 2022, 10(1): 115-132.
[12] JIANG P Y, ERGU D, LIU F Y, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
[13] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//LNCS 12346: Proce-edings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[14] 蔡剑锋, 柏俊杰, 张雪, 等. 基于改进Mask R-CNN的金属板材表面缺陷检测[J]. 重庆科技学院学报(自然科学版), 2023, 25(2): 110-116.
CAI J F, BAI J J, ZHANG X, et al. Research on surface defect recognition of metal sheet based on improved Mask R-CNN[J]. Journal of Chongqing Institute of Science and Technology (Natural Science Edition), 2023, 25(2): 110-116.
[15] ZHOU S, ZENG Y, LI S, et al. Surface defect detection of rolled steel based on lightweight model[J]. Applied Sciences, 2022, 12(17): 8905.
[16] YANG L, HUANG X, REN Y, et al. Steel plate surface defect detection based on dataset enhancement and light-weight convolution neural network[J]. Machines, 2022, 10(7): 523.
[17] 张政超. 改进YOLOv5的轻量级带钢表面缺陷检测[J]. 计算机系统应用, 2023, 32(6): 278-285.
ZHANG Z C. Lightweight strip steel defect detection based on improved YOLOv5[J]. Computer System Applications, 2023, 32(6): 278-285.
[18] QIN R, CHEN N, HUANG Y. EDDNet: an efficient and accurate defect detection network for the industrial edge environment[C]//Proceedings of the 2022 IEEE 22nd Inter-national Conference on Software Quality, Reliability and Security. Piscataway: IEEE, 2022: 854-863.
[19] 阎馨, 杨月川, 屠乃威. 基于改进SSD的钢材表面缺陷检测[J]. 现代制造工程, 2023(5): 112-120.
YAN X, YANG Y C, TU N W. Steel surface defect detec-tion based on improved SSD[J]. Modern Manufacturing Engineering, 2023(5): 112-120.
[20] 卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15): 318-328.
LU J Z, ZHANG C Y, LIU S P, et al. Lightweight DCN-YOLO for strip surface defect detection in complex envi-ronments[J]. Computer Engineering and Applications, 2023, 59(15): 318-328.
[21] WANG J, XU P, LI L, et al. DAssd-Net: a lightweight steel surface defect detection model based on multi-branch dilated convolution aggregation and multi-domain perception detec-tion head[J]. Sensors, 2023, 23(12): 5488.
[22] 周颖, 颜毓泽, 陈海永, 等. 基于改进YOLOv8的光伏电池缺陷检测[J]. 激光与光电子学进展, 2024, 61(8): 8.
ZHOU Y, YAN Y Z, CHEN H Y, et al. Defect detection of photovoltaic cells based on improved YOLOv8[J]. Adva-nces in Lasers and Optoelectronics, 2024, 61(8): 8.
[23] PHAN Q B, NGUYEN T. A novel approach for PV cell fault detection using YOLOv8 and particle swarm optimiz-ation[R/OL]. [2023-07-16]. https://doi.org/10.36227/techrxiv. 22680484.v1.
[24] CHEN H, WANG Y, GUO J, et al. VanillaNet: the power of minimalism in deep learning[J]. arXiv:2305.12972, 2023.
[25] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the 2022 Joint Euro-pean Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2022: 443-459.
[26] WANG J, CHEN K, XU R, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscat-away: IEEE, 2019: 3007-3016.
[27] LI X, WANG C, JU H, et al. Surface defect detection model for aero-engine components based on improved YOLOv5[J]. Applied Sciences, 2022, 12(14): 7235.
[28] CHEN M, YU L, ZHI C, et al. Improved faster R-CNN for fabric defect detection based on Gabor filter with genetic algorithm optimization[J]. Computers in Industry, 2022, 134: 103551.
[29] DANG L M, WANG H, LI Y, et al. DefectTR: end-to-end defect detection for sewage networks using a transformer[J]. Construction and Building Materials, 2022, 325: 126584.
[30] CUI L, JIANG X, XU M, et al. SDDNet: a fast and accurate network for surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
[31] ZHANG L, YAN S, HONG J, et al. An improved defect recognition framework for casting based on DETR algor-ithm[J]. Journal of Iron and Steel Research International, 2023, 30(5): 949-959.
[32] SURYARASMI A, CHANG C C, AKHMALIA R, et al. FN-Net: a lightweight CNN-based architecture for fabric defect detection with adaptive threshold-based class determination[J]. Displays, 2022, 73: 102241.
[33] DING K, NIU Z, HUI J, et al. A weld surface defect reco-gnition method based on improved MobileNetV2 algorithm[J]. Mathematics, 2022, 10(19): 3678.
[34] SHI C, LIN L, SUN J, et al. A lightweight YOLOv5 trans-mission line defect detection method based on coordinate attention[C]//Proceedings of the 2022 IEEE 6th Inform-ation Technology and Mechatronics Engineering Conference. Piscataway: IEEE, 2022: 1779-1785.
[35] MA Z, LI Y, HUANG M, et al. Automated real-time dete-ction of surface defects in manufacturing processes of aluminum alloy strip using a lightweight network architec-ture[J]. Journal of Intelligent Manufacturing, 2023, 34(5): 2431-2447.
[36] WANG H, YANG X, ZHOU B, et al. Strip surface defect detection algorithm based on YOLOv5[J]. Materials, 2023, 16(7): 2811.
[37] ZHOU X, WANG D, KR?HENBüHL P. Objects as points[J]. arXiv:1904.07850, 2019. |