[1] ZHANG X, CHEN X. Data security sharing and storage based on a consortium blockchain in a vehicular ad-hoc network[J]. IEEE Access, 2019, 7: 58241-58254.
[2] YANG R, YU F R, SI P, et al. Integrated blockchain and edge computing systems: a survey, some research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1508-1532.
[3] VANGALA A, BERA B, SAHA S, et al. Blockchain-enabled certificate-based authentication for vehicle accident detection and notification in intelligent transportation systems[J]. IEEE Sensors Journal, 2021, 21(14): 15824-15838.
[4] ZHANG X D, LI R, CUI B. A security architecture of VANET based on blockchain and mobile edge computing[C]//Proceedings of the 1st IEEE International Conference on Hot Information-Centric Networking, Shenzhen, Aug 15-17, 2018. Piscataway: IEEE, 2018: 258-259.
[5] ZHOU Z, WANG B, DONG M, et al. Secure and efficient vehicle-to-grid energy trading in cyber physical systems: integration of blockchain and edge computing[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(1): 43-57.
[6] VOLODYMYR M, KORAY K, DAVID S, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[7] TAN L T, HU R Q. Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10190-10203.
[8] LIU Y, YU H, XIE S, et al. Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11158-11168.
[9] LUO Q, LI C, LUAN T H, et al. Collaborative data scheduling for vehicular edge computing via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2020, 7(10): 9637-9650.
[10] ZHANG K, ZHU Y, LENG S, et al. Deep learning empowered task offloading for mobile edge computing in urban informatics[J]. IEEE Internet of Things Journal, 2019, 6(5): 7635-7647.
[11] TAVAKOLI A, PARDO F, KORMUSHEV P. Action branching architectures for deep reinforcement learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4131-4138.
[12] SUN Y, GUO X, SONG J, et al. Adaptive learning-based task offloading for vehicular edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3061-3074.
[13] FENG J, LIU Z, WU C, et al. AVE: autonomous vehicular edge computing framework with ACO-based scheduling[J] IEEE Transactions on Vehicular Technology, 2017, 66(12):10660-10675.
[14] SU Z, HUI Y, LUAN T H. Distributed task allocation to enable collaborative autonomous driving with network softwarization[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2175-2189.
[15] LIWANG M, DAI S, GAO Z, et al. A truthful reverse-auction mechanism for computation offloading in cloud-enabled vehicular network[J]. IEEE Internet of Things Journal, 2019, 6(3): 4214-4227.
[16] SHI J, DU J, WANG J, et al. Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16067-16081.
[17] SHI J, DU J, WANG J, et al. Distributed V2V computation offloading based on dynamic pricing using deep reinforcement learning[C]//Proceedings of the 2020 IEEE Wireless Communications and Networking Conference, Seoul, May 25-28, 2020. Piscataway: IEEE, 2020.
[18] SHI J, DU J, WANG J, et al, DRL-based V2V computation offloading for blockchain-enabled vehicular networks[J]. IEEE Transactions on Mobile Computing, 2023 22(7): 3882-3897.
[19] WANG Z, FREITAS N D, LANCTOT M. Dueling network architectures for deep reinforcement learning[EB/OL].[2023-05-10]. https://arxiv.org/abs/1511.06581.
[20] HASSELT H V, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning[EB/OL]. [2023-05-10]. https://arxiv.org/abs/1509.06461.
[21] CHEN X, JIAO L, LI W, et al. Efficient multi-user computation offloading for mobile-edge cloud computing[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 2795-2808.
[22] DU J, GELENBE E, JIANG C, et al. Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2457-2467.
[23] KAYNIA M, JINDAL N. Performance of ALOHA and CSMA in spatially distributed wireless networks[C]//Proceedings of the 2008 IEEE International Conference on Communications, Beijing, May 19-23, 2008. Piscataway: IEEE, 2008: 1108-1112. |