[1] CRUMPACKER J B, ROBBINS M J, JENKINS P R. An approximate dynamic programming approach for solving an air combat maneuvering problem[J]. Expert Systems with Applications, 2022, 203: 117448.
[2] JABER A, LAFON P, YOUNES R. A branch-and-bound algorithm based on NSGAII for multi-objective mixed integer nonlinear optimization problems[J]. Engineering Optimization, 2022, 54(6): 1004-1022.
[3] ALAAS Z, ELTAYEB G E A, ALDHAIFALLAH M, et al. A new MPPT design using PV-BES system using modified sparrow search algorithm based ANFIS under partially shaded conditions[J]. Neural Computing and Applications, 2023, 35(19): 14109-14128.
[4] SHIKAI S, YUANJIE Z. Constrained trajectory planning for unmanned aerial vehicles using asymptotic optimization approach[J]. Transactions of the Institute of Measurement and Control, 2023, 45(13): 2421-2436.
[5] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[6] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2022, 79(7): 7305-7336.
[7] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[8] LAITH A, ABD M E, PUTRA S, et al. Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer[J]. Expert Systems with Applications, 2022, 191: 116158.
[9] KHAYYAT M M. Improved bacterial foraging optimization with deep learning based anomaly detection in smart cities[J]. Alexandria Engineering Journal, 2023, 75: 407-417.
[10] XIONG Y, ZOU Z M, CHENG J C. Cuckoo search algorithm based on cloud model and its application[J]. Scientific Reports, 2023, 13(1): 10098.
[11] 贾鹤鸣, 陈丽珍, 力尚龙, 等. 透镜成像反向学习的精英池侏儒猫鼬优化算法[J]. 计算机工程与应用, 2023, 59(24): 131-139.
JIA H M, CHEN L Z, LI S L, et al. Optimization algorithm of elite pool dwarf mongoose based on lens imaging reverse learning[J]. Computer Engineering and Applications, 2023, 59(24): 131-139.
[12] LIU Z C, BAI Y S, JIA X S. Multi-strategy improved sparrow search algorithm[J]. Journal of Physics: Conference Series, 2023(1).
[13] 付华, 刘昊. 多策略融合的改进麻雀搜索算法及其应用[J]. 控制与决策, 2022, 37(1): 87-96.
FU H, LIU H. Improved sparrow search algorithm with multi-strategy integration and its application[J]. Control and Decision, 2022, 37(1): 87-96.
[14] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用, 2023, 59(22): 92-110.
PAN J C, LI S B, ZHOU P, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22): 92-110.
[15] DUAN J H, GONG Y P, LUO J, et al. Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer[J]. Scientific Reports, 2023, 13(1): 12127.
[16] SHEN Q, ZHANG D, XIE M, et al. Multi-strategy enhanced dung beetle optimizer and its application in three-dimensional UAV path planning[J]. Symmetry, 2023, 15(7): 1432.
[17] KENNEDY J, EBERHART R. Particle swarm optimization [C]//Proceedings of the 1995 International Conference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948.
[18] STORN R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[19] ABUALIGAH L, YOUSRI D, ABD E M, et al. Aquila optimizer: a novel metaheuristic optimization algorithm[J]. Computers & Industrial Engineering, 2021, 157: 107250.
[20] DHIMAN G, KUMAR V. Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165: 169-196.
[21] KAUR S, AWASTHI L K, SANGAL A L, et al. Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103541.
[22] MIRJALILI S, MIRJALILI M S, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[23] 柴岩, 任生. 多策略协同优化的改进HHO算法[J]. 计算机应用研究, 2022, 39(12): 3658-3666.
CHAI Y, REN S. Improved HHO algorithm based on multi-strategy cooperative optimization[J]. Application Research of Computers, 2022, 39(12): 3658-3666.
[24] LAITH A, ALI D, DAVOR S, et al. Boosted Harris hawks gravitational force algorithm for global optimization and industrial engineering problems[J]. Journal of Intelligent Manufacturing, 2022, 34(6): 2693-2728.
[25] YA S, CHEN Z, FARHAD G S, et al. An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems[J]. Expert Systems with Applications, 2023, 215: 119269.
[26] 王逸文, 王维莉, 杨宇鸽, 等. 多策略融合改进的海洋捕食者算法及其工程应用[J/OL]. 计算机集成制造系统 [2023-08-04]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230515. 1111.008.html.
WANG Y W, WANG W L, YANG Y G, et al. Improved marine predators algorithm with multi-strategy fusion and its engineering applications[J/OL]. Computer Integrated Manufacturing Systems [2023-08-04]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230515.1111.008.html.
[27] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.
[28] LAITH A, ALI D, SEYEDALI M, et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376: 113609.
[29] FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377. |