[1] ZHANG X, LIU S. Understanding relationship commitment and continuous knowledge sharing in online health communities: a social exchange perspective[J]. Journal of Knowledge Management, 2022, 26(3): 592-614.
[2] YANG H Z, GAO H Y. Personalized content recommendation in online health communities[J]. Industrial Management & Data Systems, 2021, 122(2): 345-364.
[3] FAN H M, LEDERMAN R. Online health communities: how do community members build the trust required to adopt information and form close relationships?[J]. European Journal of Information Systems, 2018, 27(1): 62-89.
[4] HU Y J, ZHOU S S. Will reviewer recommendation source and cured status bias review helpfulness in online health community?[J]. Online Information Review, 2023, 47(4): 680-696.
[5] HE Z F, HAN Y Q, OUYANG Z Q, et al. DialMed: a dataset for dialogue-based medication recommendation[C]//Proceedings of the 29th International Conference on Computational Linguistics, Oct 12-17, 2022: 721-733.
[6] CHOI E, BAHADORI M T, SUN J M, et al. Retain: an interpretable predictive model for healthcare using reverse time attention mechanism[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 29-37.
[7] WANG Y D, CHEN W T, PI D D, et al. Adversarially regularized medication recommendation model with multi-hop memory network[J]. Knowledge and Information Systems, 2021, 63: 125-142.
[8] SHANG J Y, XIAO C, MA T F, et al. GameNet: graph augmented memory networks for recommending medication combination[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 1126-1133.
[9] YANG C Q, XIAO C, MA F L, et al. Safedrug: dual molecular graph encoders for recommending effective and safe drug combinations[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, Aug 19-27, 2021: 3735-3741.
[10] REN Y J, SHI Y L, ZHANG K, et al. A drug recommendation model based on message propagation and DDI gating mechanism[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(7): 3478-3485.
[11] ZHENG Z, QIU Z P, XIONG H, et al. DDR: dialogue based doctor recommendation for online medical service[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 14-18, 2022. New York: ACM, 2022: 4592-4600.
[12] WEI Z Y, LIU Q L, PENG B L, et al. Task-oriented dialogue system for automatic diagnosis[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 201-207.
[13] YAN G J, PEI J H, REN P J, et al. ReMeDi: resources for multi-domain, multi-service, medical dialogues[C]//Procee-dings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2022. New York: ACM, 2022: 3013-3024.
[14] BROCKI L, DYER G C, G?ADKA A, et al. Deep learning mental health dialogue system[C]//Proceedings of the 2023 IEEE International Conference on Big Data and Smart Computing, Feb 13-16, 2023. Piscataway: IEEE, 2023: 395-398.
[15] TIAN B, ZHANG Y, CHEN X H, et al. DRGAN: a GAN-based framework for doctor recommendation in Chinese on-line QA communities[C]//Proceedings of the 2019 International Conference on Database Systems for Advanced Applications, Apr 22-25, 2019: 444-447.
[16] 岳增营, 叶霞, 刘睿珩. 基于语言模型的预训练技术研究综述[J]. 中文信息学报, 2021, 35(9): 15-29.
YUE Z Y, YE X, LIU R H. A survey of language model based pre-training technology[J]. Journal of Chinese Information Processing, 2021, 35(9): 15-29.
[17] TORFI A, SHIRVANI R A, KENESHLOO Y, et al. Natural language processing advancements by deep learning: a survey[EB/OL]. [2023-07-15]. https://arxiv.org/abs/2003.01200.
[18] K?OSOWSKI P. Deep learning for natural language processing and language modelling[C]//Proceedings of the 2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications, Dec 6, 2018. Piscataway: IEEE, 2018: 223-228.
[19] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2023-07-15]. https://arxiv.org/abs/1710.10903.
[20] LI Y C, YIN C X, ZHONG S H. Sentence constituent-aware aspect-category sentiment analysis with graph attention networks[C]//Proceedings of the 9th CCF International Conference on Natural Language Processing and Chinese Computing, Oct 14-18, 2019. Cham: Springer, 2020: 815-827.
[21] YUAN L, WANG J, YU L C, et al. Graph attention network with memory fusion for aspect-level sentiment analysis[C]//Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, Dec 4-7, 2020. Stroudsburg: ACL, 2020: 27-36.
[22] ZHAO M, WANG L F, JIANG Z J, et al. Multi-task learning with graph attention networks for multi-domain task-oriented dialogue systems[J]. Knowledge-Based Systems, 2023, 259: 110069.
[23] WANG Y Z, WANG H Z, LU W B, et al. HyGGE: hyperbolic graph attention network for reasoning over knowledge graphs[J]. Information Sciences, 2023, 630: 190-205.
[24] 陈成, 张皞, 李永强, 等. 关系生成图注意力网络的知识图谱链接预测[J]. 浙江大学学报(工学版), 2022, 56(5): 1025-1034.
CHEN C, ZHANG H, LI Y Q, et al. Knowledge graph link prediction based on relational generative graph attention network[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(5): 1025-1034.
[25] XU H, YUAN Z Q, ZHAO K, et al. GAR-Net: a graph attention reasoning network for conversation understanding[J]. Knowledge-Based Systems, 2022, 240: 108055.
[26] AHMED U, LIN J C W, SRIVASTAVA G. Hyper-graph attention based federated learning methods for use in mental health detection[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 27(2): 768-777.
[27] HONG Y, LUO P Y, JIN S T, et al. LaGAT: link-aware graph attention network for drug-drug interaction prediction[J]. Bioinformatics, 2022, 38(24): 5406-5412.
[28] 邓聚龙. 灰色系统理论教程[M]. 武汉: 华中理工大学出版社, 1990.
DENG J L. Grey system theory course[M]. Wuhan: Huazhong University of Technology Press, 1990.
[29] 张岐山, 邓聚龙, 邵勇. 均衡接近度灰关联分析方法[J]. 华中理工大学学报, 1995, 23(11): 94-98.
ZHANG Q S, DENG J L, SHAO Y. A grey correlational analysis by the method of degree of balance and approach[J]. Journal of Huazhong University of Technology, 1995, 23(11): 94-98.
[30] 陈德光, 马金林, 马自萍, 等. 自然语言处理预训练技术综述[J]. 计算机科学与探索, 2021, 15(8): 1359-1389.
CHEN D G, MA J L, MA Z P, et al. Review of pre-training techniques for natural language processing[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1359-1389.
[31] 王乃钰, 叶育鑫, 刘露, 等. 基于深度学习的语言模型研究进展[J]. 软件学报, 2021, 32(4): 1082-1115.
WANG N Y, YE Y X, LIU L, et al. Language models based on deep learning: a review[J]. Journal of Software, 2021, 32(4): 1082-1115.
[32] YE M C, LUO J Y, XIAO C, et al. LSAN: modeling long-term dependencies and short-term correlations with hierarchical attention for risk prediction[C]//Proceedings of the 29th ACM International Conference on Information & Know-ledge Management, Oct 19-23, 2020. New York: ACM, 2020: 1753-1762.
[33] LUO J Y, YE M C, XIAO C, et al. HiTANet: hierarchical time-aware attention networks for risk prediction on electronic health records[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 20, 2020. New York: ACM, 2020: 647-656.
[34] SHEN W Z, WU S Y, YANG Y Y, et al. Directed acyclic graph network for conversational emotion recognition[EB/OL]. [2023-07-15]. https://arxiv.org/abs/2105.12907. |