[1] YANG Z, ZOLANVARI M, JAIN R. A survey of important issues in quantum computing and communications[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1059-1094.
[2] DUAN B J, YUAN J B, YU C H, et al. A survey on HHL algorithm: from theory to application in quantum machine learning[J]. Physics Letters A, 2020, 384(24): 126595.
[3] KADIAN K, GARHWAL S, KUMAR A. Quantum walk and its application domains: a systematic review[J]. Computer Science Review, 2021, 41: 100419.
[4] 闫飞, 梁文, 董芳艳. 量子行走在复杂网络中的应用[M]. 北京: 科学出版社, 2023.
YAN F, LIANG W, DONG F Y. Applications of the quantum walk on complex networks[M]. Beijing: Science Press, 2023.
[5] YAN F, HUANG H S, YU X. A multiwatermarking scheme for verifying medical image integrity and authenticity in the Internet of medical things[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8885-8894.
[6] LIANG W, YAN F, ILIYASU A M, et al. A Hadamard walk model and its application in identification of important edges in complex networks[J]. Computer Communications, 2022, 193: 378-387.
[7] LIANG W, YAN F, ILIYASU A M, et al. A simplified quantum walk model for predicting missing links of complex networks[J]. Entropy, 2022, 24(11): 1547.
[8] LIANG W, YAN F, ILIYASU A M, et al. Three degrees of influence rule-based Grover walk model with application in identifying significant nodes of complex networks[J]. Human-Centric Computing and Information Sciences, 2023, 13(9): 1-16.
[9] XIE W, TAMON C. Optimality of spatial search in graphs with infinite tail[J]. Physical Review A, 2023, 107(3): 032416.
[10] CUI L, LI M, BAI L, et al. QBER: quantum-based entropic representations for un-attributed graphs[J]. Pattern Recognition, 2024, 145: 109877.
[11] VENEGAS-ANDRACA S E. Quantum walks: a comprehensive review[J]. Quantum Information Processing, 2012, 11(5): 1015-1106.
[12] XIA F, LIU J, NIE H, et al. Random walks: a review of algorithms and applications[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(2): 95-107.
[13] ZHOU W. Review on quantum walk algorithm[J]. Journal of Physics: Conference Series, 2021, 1748(3): 032022.
[14] AHARONOV Y, DAVIDOVICH L, ZAGURY N. Quantum random walks[J]. Physical Review A, 1993, 48(2): 1687.
[15] FALCAO P R N, MENDON?A J P, BUARQUE A R C, et al. Nonlinear three-state quantum walks[J]. Physical Review A, 2022, 106(4): 042202.
[16] PORTUGAL R. Quantum walks and search algorithms[M]. Berlin, Heidelberg: Springer, 2018.
[17] HE Z M, HUANG Z M, LI L Z, et al. Coherence evolution in two-dimensional quantum walk on lattice[J]. International Journal of Quantum Information, 2018, 16(2): 1850011.
[18] SHANG Y, WANG Y, LI M, et al. Quantum communication protocols by quantum walks with two coins[J]. Europhysics Letters, 2019, 124(6): 60009.
[19] SAHA A, MANDAL S B, SAHA D, et al. One-dimensional lazy quantum walk in ternary system[J]. IEEE Transactions on Quantum Engineering, 2021, 2: 1-12.
[20] BERRY S D, WANG J B. Two-particle quantum walks: entanglement and graph isomorphism testing[J]. Physical Review A, 2011, 83(4): 042317.
[21] 冯艳艳, 施荣华, 石金晶, 等. 基于量子游走的仲裁量子签名方案[J]. 物理学报, 2019, 68(12): 68-76.
FENG Y Y, SHI R H, SHI J J, et al. Arbitrated quantum signature scheme based on quantum walks[J]. Acta Physica Sinica, 2019, 68(12): 68-76.
[22] CHO B, XIAO Y, HUI P, et al. Quantum bandit with amplitude amplification exploration in an adversarial environment[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(1): 311-317.
[23] CARETTE T, LAURIèRE M, MAGNIEZ F. Extended learning graphs for triangle finding[J]. Algorithmica, 2020, 82(4): 980-1005.
[24] BAI L, JIAO Y H, CUI L X, et al. Learning graph convolutional networks based on quantum vertex information propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(2): 1747-1760.
[25] 胡钢, 卢志宇, 王乐萌, 等. 基于复杂网络多阶邻域贡献度的节点重要性序结构辨识[J]. 电子学报, 2023, 51(7): 1956-1963.
HU G, LU Z Y, WANG L M, et al. Identification of node importance order structure based on multi-order neighborhood contribution of complex network[J]. Acta Electronica Sinica, 2023, 51(7): 1956-1963.
[26] MUKHAMEDOV F, SOUISSI A, HAMDI T, et al. Open quantum random walks and quantum Markov chains on trees II: the recurrence[J]. Quantum Information Processing, 2023, 22(6): 232.
[27] HAO W, ZHANG T, CHEN X, et al. A hybrid NEQR image encryption cryptosystem using two-dimensional quantum walks and quantum coding[J]. Signal Processing, 2023, 205: 108890.
[28] ORTEGA S A, MARTIN-DELGADO M A. Generalized quantum PageRank algorithm with arbitrary phase rotations[J]. Physical Review Research, 2023, 5(1): 013061.
[29] MUKAI K, HATANO N. Discrete-time quantum walk on complex networks for community detection[J]. Physical Review Research, 2020, 2(2): 023378.
[30] WANG K K, SHI Y H, XIAO L, et al. Experimental realization of continuous-time quantum walks on directed graphs and their application in PageRank[J]. Optica, 2020, 7(11): 1524-1530.
[31] WU T, IZAAC J, LI Z X, et al. Experimental parity-time symmetric quantum walks for centrality ranking on directed graphs[J]. Physical Review Letters, 2020, 125(24): 240501.
[32] CARSON G R, LOKE T, WANG J B. Entanglement dynamics of two-particle quantum walks[J]. Quantum Information Processing, 2015, 14(9): 3193-3210.
[33] 李萌, 孙晓明. 量子游走相关算法研究进展[J]. 信息通信技术与政策, 2022, 337(7): 28-36.
LI M, SUN X M. Research progress on quantum walk related algorithms[J]. Information and Communications Technology and Policy, 2022, 337(7): 28-36.
[34] LIU K, ZHANG Y, LU K, et al. MapEff: an effective graph isomorphism algorithm based on the discrete-time quantum walk[J]. Entropy, 2019, 21(6): 569.
[35] SCHOFIELD C, WANG J B, LI Y Y. Quantum walk inspired algorithm for graph similarity and isomorphism[J]. Quantum Information Processing, 2020, 19(9): 1-19.
[36] ZHANG Y, WANG L L, WILSON R C, et al. An R-convolution graph kernel based on fast discrete-time quantum walk[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(1): 292-303.
[37] WANG X, LU K, ZHANG Y, et al. QSIM: a novel approach to node proximity estimation based on discrete-time quantum walk[J]. Applied Intelligence, 2021, 51(4): 2574-2588.
[38] 王兆慧, 沈华伟, 曹婍, 等. 图分类研究综述[J]. 软件学报, 2022, 33(1): 171-192.
WANG Z H, SHEN H W, CAO Q, et al. Survey on graph classification[J]. Journal of Software, 2022, 33(1): 171-192.
[39] DERNBACH S, MOHSENI-KABIR A, PAL S, et al. Quantum walk neural networks with feature dependent coins[J]. Applied Network Science, 2019, 4(1): 1-16.
[40] BAI L, ROSSI L, CUI L, et al. A quantum-inspired similarity measure for the analysis of complete weighted graphs[J]. IEEE Transactions on Cybernetics, 2020, 50(3): 1264-1277.
[41] DOUGLAS B L, WANG J B. A classical approach to the graph isomorphism problem using quantum walks[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(7): 075303.
[42] WANG X, JIAN S L, LU K, et al. RED: learning the role embedding in networks via discrete-time quantum walk[J]. Applied Intelligence, 2022, 52(2): 1493-1507.
[43] CHILDS A M, GOLDSTONE J. Spatial search by quantum walk[J]. Physical Review A, 2004, 70(2): 022314.
[44] OSADA T, COUTINHO B, OMAR Y, et al. Continuous-time quantum-walk spatial search on the Bollobás scale-free network[J]. Physical Review A, 2020, 101(2): 022310.
[45] LI M, SHANG Y. Generalized exceptional quantum walk search[J]. New Journal of Physics, 2020, 22(12): 123030.
[46] CHAKRABORTY S, NOVO L, ROLAND J. Optimality of spatial search via continuous-time quantum walks[J]. Physical Review A, 2020, 102(3): 032214.
[47] CHAKRABORTY S, NOVO L, ROLAND J. Finding a marked node on any graph via continuous-time quantum walks[J]. Physical Review A, 2020, 102(2): 022227.
[48] APERS S, CHAKRABORTY S, NOVO L, et al. Quadratic speedup for spatial search by continuous-time quantum walk[J]. Physical Review Letters, 2022, 129(16): 160502.
[49] MAGNIEZ F, NAYAK A, ROLAND J, et al. Search via quantum walk[J]. SIAM Journal on Computing, 2011, 40(1): 142-164.
[50] AMBAINIS A. Quantum walk algorithm for element distinctness[C]//Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, Rome, Oct 17-19, 2014. Washington: IEEE Computer Society, 2014: 22-31.
[51] MAGNIEZ F, NAYAK A, RICHTER P C, et al. On the hitting times of quantum versus random walks[J]. Algorithmica, 2012, 63(1): 91-116.
[52] BUN M, KOTHARI R, THALER J. The polynomial method strikes back: tight quantum query bounds via dual polynomials[C]//Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, Los Angeles, Jun 25-29, 2018. New York: ACM, 2018: 297-310.
[53] PAPARO G D, MüLLER M, COMELLAS F, et al. Quantum Google in a complex network[J]. Scientific Reports, 2013, 3(1): 2773.
[54] IZAAC J A, ZHAN X, BIAN Z H, et al. Centrality measure based on continuous-time quantum walks and experimental realization[J]. Physical Review A, 2017, 95(3): 032318.
[55] CHAWLA P, MANGAL R, CHANDRASHEKAR C M. Discrete-time quantum walk algorithm for ranking nodes on a network[J]. Quantum Information Processing, 2020, 19(5): 1-21.
[56] BOITO P, GRENA R. Ranking nodes in directed networks via continuous-time quantum walks[J]. Quantum Information Processing, 2023, 22(6): 246.
[57] B?TTCHER L, PORTER M A. Classical and quantum random-walk centrality measures in multilayer networks[J]. SIAM Journal on Applied Mathematics, 2021, 81(6): 2704-2724.
[58] WANG Y, XUE S, WU J, et al. Continuous-time quantum walk based centrality testing on weighted graphs[J]. Scientific Reports, 2022, 12(1): 6001.
[59] 赵国涛, 王立夫, 关博飞. 一类影响网络能控性的边集研究[J]. 物理学报, 2021, 70(14): 379-393.
ZHAO G T, WANG L F, GUAN B F. A class of edge set affecting network controllability[J]. Acta Physica Sinica, 2021, 70(14): 379-393.
[60] LOCKHART J, MINELLO G, ROSSI L, et al. Edge centrality via the Holevo quantity[C]//Proceedings of the 11th Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition, Mérida, Nov 30-Dec 2, 2016. Cham: Springer, 2016: 143-152.
[61] KUMAR M, MISHRA S, BISWAS B. PQKLP: projected quantum kernel based link prediction in dynamic networks[J]. Computer Communications, 2022, 196: 249-267.
[62] MOUTINHO J P, MELO A, COUTINHO B, et al. Quantum link prediction in complex networks[J]. Physical Review A, 2023, 107(3): 032605.
[63] FACCIN M, MIGDA? P, JOHNSON T H, et al. Community detection in quantum complex networks[J]. Physical Review X, 2014, 4(4): 041012.
[64] 梁文, 闫飞, 陈柏圳. 两阶段量子行走算法在社区检测中的应用[J]. 计算机应用研究, 2023, 40(9): 2329-2333.
LIANG W, YAN F, CHEN B Z. Two-stage quantum walk algorithm with application to community detection[J]. Application Research of Computers, 2023, 40(9): 2329-2333.
[65] TANG H, SHI R X, HE T S, et al. TensorFlow solver for quantum PageRank in large-scale networks[J]. Science Bulletin, 2021, 66(2): 120-126. |